Prime Computer, Inc.

DOC 4303-191L
Pascal Reference Guide

Revision 1942

UPDATE PACKAGE
UPD4303-192
for

PASCAL REFERENCE GUIDE, DOC4303-191

June 1983

This Update Package, UPD4303-192, is Update 1 for the December 1982
Edition of the Pascal Reference Guide, DOC4303-191. ‘This package
contains 264 pages. A list of effective pages appears on the next

page.

Changes made to the text since the last printing are identified by
vertical bars in the margin. ¢Change bars with numbers identify new
Pascal features of Software Release 19.2. Change bars without numbers
identify documentation corrections and clarifications.

Copyright © 1983 by Prime Computer, Incorporated
Technical Publications Department

500 0ld Connecticut Path

Framingham, MA 01701

The information oontained on these updated pages is subject to change
without notice and should not be construed as a commitment by Prime
Computer Corporation. Prime Computer Corporation assumes no
responsibility for any errors that may appear in this package.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
PRIMENET, RINGNET, Prime INFORMATION and THE PROGRAMMER'S COMPANION are
trademarks of Prime Computer, Inc.

(Pages with changes, enclosed with this package, are underlined.)

Effective Pages for the Pascal Reference Guide at Software Release

19.2.

Pages

ii tov
vi to ix
x to xiii

1-1 to 1-2
13

1-4 to 1-6

2-1 to 2-2
23
2-4 to 2-6
2-7
2-8 to 2-10
2-11

2-12 to 2-13
2-14

2-15 to 2-17

3-1
3-2

3-3 to 3-8

T
=9

w

O Wi (8]

-5 to 5-15

-1 to 6-2
-3 to 6-8

o\ YO

to 6-13
to 6-14L

] 1 1
N S Tl o Ll
ol ule o

[e))

1

(]

o

(=] ENNE, | |]
ﬂ
O
T
()

Pages

8-1 to 8-2
8-3

8-4 to 8-16
9-1 to 9-8
9-9 to 9-9A
9-10 to 9-11
9-12

9-13 to 9-17
9-18 to 9-18A
9-19 to 9-22
10-1

10-2 to 10-3
10-4

10-5 to 10-5A
10-6 to 10-10

10-11 to 10-12
10-13 to 10-23
10-24

11-1

11-2 to 11-4
11-5

A-1 to A-3
A-4 to A-4A
A-5

Bl

B-2 to B-7
B-8 to B-9
D-1

D-2

D-3 to D-8
D9

X-1 to X-16

Pascal Reference Guide

DOC4303-191

Second Edition

by
A. Paul Cioto

Updated for Software Release 19.2

This quide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.2 (Rev., 19.2).

Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1982 by
Prime Computer, Incorporated
500 01d Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, PRIME INFORMATION, and THE PROGRAMMER'S (OMPANION
are trademarks of Prime Computer, Inc.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers Prime Employees
Software Distribution Communications Services
Prime Computer, Inc. MS 15-13, Prime Park
1 New York Ave. Natick, MA 01760
Framingham, MA 01701 (617) 655-8000 X4837
(617) 879-2960 X2053

Customers Outside U.S. PRIME INFORMATION
Contact your local Prime Contact your Prime
subsidiary or distributor. INFORMATION dealer.

ii

PRINTING HISTORY — PASCAL REFERENCE GUIDE

Edition Date Number Software Release
First Edition October 1980 IDR4303 17.6
Update 1 December 1980 PTU2600-080 18.1
Udpate 2 July 1982 PTU26700-086 19.0
Second Edition December 1982 DOCA303-191 19.1
Update 1 June 1983 UPD4303-192 19.2

The Second Edition is a complete revision of IDR4303. It
incorporates update material up to and including software
release 19.1, corrects all known errors, and has been revised
for clarity.

Changes made to the text since the last printing have been
indicated with change bars in the margin. Change bars with
numbers indicate technical changes. Those without numbers
indicate rewrites for clarification or additional information.

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

A. Paul Cioto

Technical Publications Department
Prime Computer, Inc.

500 O0l1d Connecticut Path
Framingham, Massachusetts 01701

iii

Contents

ABOUT THIS BOOK xi

PART I - OVERVIEW

1 INTRODUCTION TO PRIME PASCAL

The Pascal Language 1-2
Prime Pascal 1-2
Contents of This Book 1-2
Related Documents 1-4
Interface to Other Languages 1-6

PART II - COMPILING, LOADING,
AND EXECUTING PROGRAMS

2 USING THE PASCAL COMPILER

Introduction 2-1
Invoking the Compiler 2-2
Compiler Error Messages 2-2
Filename Conventions 2-4
Compiler Options 2-6
Compiler Option Abbreviations 2-13
Compiler Switches 2-16

3 LOADING AND EXECUTING PROGRAMS
Loading Programs 3-1
Executing Programs 3-7
PART III - PRIME PASCAL LANGUAGE REFERENCE

4 PASCAL LANGUAGE ELEMENTS

Definitions 4-2
Pascal Character Set 4-4
Keywords 4-7
Identifiers 4-7

Numeric Constants
Character—-strings
Declarations and Statements
Line Format

Comments, Blanks, and Ends of Lines

5 PASCAL PROGRAM STRUCTURE

Program Heading
The Block
Declaration Part
LABEL
CONSTANT
TYPE
VARIABLE
PROCEDURE and FUNCTION
Executable Part
A Program Example

6 DATA TYPES

Scalar Data Types
Standard Scalar Data Types
INTEGER
LONGINTEGER
REAL
LONGREAL
BOOLEAN
CHAR
User—defined Scalar Data Types
Enumerated
Subrange
Structured Data Types
19.2] The STRING Type
The ARRAY Type
The RECORD Type
The SET Type
The FILE Type
TEXT
The Pointer Type

7 EXPRESSIONS

Operands
Operators
Arithmetic Operators
Relational Operators
SET Operators
BOOLEAN Operators
Integer Operators
19.21 STRING Concatenation Operator
Operator Precedence

vi

4-11
4-11
4-11
4-11

5-1
5-3
5-4
5-4
5-6
5-6
5-7
5-9
5-9
5-11

6-10
6-10
6-12
6-14
6-14
6-14
6-20
6-25
6-27
6-29
6-31

7-1
7-2
7-2
7-3

7-6
7-7

7-7

8 STATEMENTS

summary of Statements
Assignment Statement
Procedure Statement
Compound Statement
Empty Statement
Control Statements
Repetitive Statements
REPEAT
WHILE
FOR
Conditional Statements
IF
CASE
Unconditional Statement
GOTO
WITH Statement

9 PROCEDURES AND FUNCTIONS

Parameters

Procedures

Functions

Forward Procedures and Functions
External Procedures and Functions
Recursive Procedures and Functions

10 INPUT AND OUTPUT

Inputting and Outputting Data
at the Terminal
Inputting and Outputting Data
with PRIMDS Files
Creating and Using Input
Data Files
The RESET Procedure
Creating and Using Output
Data Files
The REWRITE Procedure
I/0 Procedures and Functions
Input File-handling Procedures
GET
READ
READLN
Output File-handling Procedures
PUT
WRITE
WRITELN
BOOLEAN Functions
EOF
EOLN

vii

9-2
9-9
9-12
9-14
9-15
9-19

10-2
10-6

10-6
10-7

10-11
10-11
10-14
10-15
10-15
10-15
10-17
10-18
10-18
10-18
10-22
10-22
10-22
10-23

19.21

Auxiliary Procedures
PAGE
CLOSE

11 STANDARD FUNCTIONS

Arithmetic Functions
ABS
SOR
SIN
Qs
EXP
IN
SORT
ARCTAN
Transfer Functions
TRUNC
ROUND
Ordinal Functions
ORD
CHR
SucC
PRED
BOOLEAN Functions
ODD
EOF
EOLN
STRING Functions

APPENDIXES

A SUMMARY OF PRIME EXTENSIONS
AND RESTRICTIONS

Prime Extensions
Prime Restrictions

B DATA FORMATS

Overview

INTEGER Type Data
LONGINTEGER Type Data
Subrange Type Data
REAL, Type Data
LONGREAL Type Data
CHAR Type Data
BOOLEAN Type Data
Enumerated Type Data
ARRAY Type Data
REQORD Type Data
SET Type Data

viii

10-23
10-23
10-24

11-1
11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-2
11-2
11-2
11-2
11-3
11-3
11-3
11-3
11-4
11-5
11-5
11-5
11-5
11-5

B-1
B-2
B-2
B-3
B-3
B-3
B-4
B-4
B-4
B-5
B-5
B-5

FILE Type Data
Pointer Type Data
STRING Type Data

C ASCII CHARACTER SET

D

Prime Usage
Special Character
Keyboard Input

INTERFACING PASCAL TO OTHER LANGUAGES

Overview

Interfacing INTEGER, BOOLEAN,

S

and Enumerated

Interfacing LONGINTEGER

Interfacing REAL

Interfacing LONGREAL
Interfacing CHAR and ARRAY

OF CHAR

Interfacing Pointer

Interfacing SET

Interfacing RECORD
Interfacing STRING

INDEX

ix

B-6
B-8
B-9

c-1
Cc-2
C-2

D-1

D-3
D4
D4
D-5

D-5
D-7

D-7
D-9

X-1

119.2

119.2

About
This Book

This book is a reference guide to the Pascal language as implemented on
Prime computers. It documents Prime's Pascal compiler, along with
Prime's extensions and restrictions to standard Pascal. The generic
term Prime Pascal refers to the way standard Pascal is implemented on
Prime computers, including all Prime's extensions and restrictions.

You are expected to be familiar with the Pascal language, and with
programming in general, but not necessarily with Prime computers, For
example, if you are a programmer at an installation that uses Prime
Pascal, or if you are a Pascal instructor or student at a university
that uses Prime Pascal, this book would be particularly useful.

HON TO USE THIS BOOK

This book is divided into three parts:
e Part I — Overview (Chapter 1)

e Part II — Compiling, Loading, and Executing Programs (Chapters
2 and 3)

e Part III —— Prime Pascal Language Reference (Chapters 4-11)
Four appendixes and an index follow Chapter 11.
If you are already familiar with Prime Pascal, but want to brush up on

using the Prime system to compile, load, and execute programs, read
Part II first.

xi

If you are not familiar with Prime Pascal, turn to Part I for a
detailed chapter-by-chapter description of what this book contains.
Part I also lists several other Prime documents that you will need in
conjunction with the Pascal Reference Guide.

After reading Part I, turn to the chapters in Part III that you think
will help you become familiar with Prime Pascal. Chapters 4, 5, and
10 — Pascal language elements, program structure, and
input/output -- are good places to start. You should also read
Appendix A, which summarizes the differences between Prime Pascal and
standard Pascal (Prime extensions and restrictions).

Change bars in the margins reflect changes made to the text since the
first edition, which was published at software release 17.6
(Rev. 17.6). Change bars with numbers indicate technical changes and
the software release of those changes. Change bars without numbers
indicate rewrites for clarifications or additionmal information.

DOQUMENTATION QONVENTIONS

The following conventions are used in command formats, statement
formats, in examples, and in the documentation in general .

Convention Explanation Examples
underlining In examples of computer- OK, SEG -LOAD
in examples user dialog, user input is [SEG rev 19.1]

of computer- underlined and system output $ LOAD TEST
user dialog is not.

UPPERCASE Words in uppercase signify The REAL type
Pascal standard identifiers, The ORD function
keywords, commands, compiler LOAD
options, and data types. The -DEBUG option
However, any of these can be
typed in uppercase or lower-

case.
UPPERCASE Examples of ©Pascal code WHILE NOT EOLN DO
in program appear in uppercase for BEGIN
examples consistency. However, pro— READ(A) ;

grams can be typed in upper—
case or lowercase.

lowercase

Brackets

(]

Ellipsis

Parentheses

()

Hyphen

Vertical
slash

In command formats, words
in lowercase indicate items
for which you must substi-
tute a suitable value.

In command, option, or
statement formats, brackets
enclose a list of one or
more of these items. Choose
none, one, or more of these
items. (Do not confuse
these brackets with array
index or set brackets.)

In command and statement
formats, and in program
examples, an ellipsis indi-
cates the preceding item may
be repeated, or that there
are more statements to be
processed.

When parentheses appear in
a statement format, they
must be included literally
when a statement is used.

Whenever a hyphen appears
in a command 1line option,
it is a required part of
that option.

In command or statement
formats, vertical slashes
indicate a choice of one
item or another.

xiii

LOAD filename

-LISTING [argument]

statement-1l...
statement—-n

RESET (file,'filename');

PASCAL TEST -XREF

READLN (file|variable);

PART 1

Overview

Introduction to

Prime Pascal

Tis document is a programmer's reference guide to the Pascal language
as implemented on Prime computers.

You are expected to be familiar with the Pascal language, and with
programming in general, but not necessarily with Prime computers. If
you are unfamiliar with the language, there are many commercially
available instruction books, such as:

Cherry, G., Pascal Programming Structures, Reston Publishing Co.,
Inc., New Jersey, 1980.

Cooper, Doug and Clancy, Michael, Oh! Pascall, W. W. Norton &
Company, New York and London, 1982.

Jensen, Kathleen and Wirth, Niklaus, PASCAL User Manual And Report,
Second Edition. Springer-Verlag, New York, 1978.

Schneider, G., Weingart, S. and Perlman, D., An Introduction To

Programming And Problem Solving With PASCAL, John wiley & Sons,
Inc., New York, 1978.

1-1 Second Edition

DOC4303-191

THE PASCAL, LANGUAGE

Pascal is a multipurpose structured programming language that can be
used for system, commercial, and scientific data processing. Pascal is
also used as the principal instructional language in many educational
institutions. This language, developed in 1968 by Professor Niklaus
Wirth at the Eidgenossische Technische Hochschule (ETH) in Zurich,
Switzerland, is a descendent of the language ALGOL-60. Pascal is named
for the French mathematician Blaise Pascal.

IRIME PASCAL

Prime Pascal refers to the way standard Pascal is implemented on Prime
computers, including all of Prime's enhancements and limitations to
standard Pascal. In this book, when the Pascal language is mentioned,
it refers to Prime Pascal as a whole.

Prime Extensions and Restrictions

Prime Pascal varies from standard Pascal in several ways. Prime has
Created many enhancements, which are commonly called extensions, as
well as limitations, which are called restrictions. Throughout this
book, Prime's extensions and restrictions are clearly identified when
they are discussed.

Appendix A lists Prime extensions and restrictions, along with the
chapter in which each is discussed.

QONTENTS OF THIS BOOK

The following is a brief chapter-by-chapter description of the contents
of this book.

Part T —— Overview

e Chapter 1 contains a brief introduction to the Pascal language
as implemented on Prime computers.

Second Edition 1-2

INTRODUCTION TO PRIME PASCAL

r part II — Compiling, Loading, and Executing Programs

Chapter 2 provides information on the use of Prime's Pascal
compiler, including compiler options.

Chapter 3 provides information on loading and executing programs
with Prime's SEG utility.

Part III — Pascal Language Reference

Chapter 4 provides brief descriptions of Pascal language
elements and of terms used throughout Part III.

Chapter 5 lists the fundamental elements of the Pascal program
structure.

Chapter 6 describes the data types available in Pascal,
including three Prime extension data types called LONGINTEGER,
LONGREAL, and STRING.

Chapter 7 describes the use of Pascal expressions.

Chapter 8 describes the use of executable Pascal statements.
Chapter 9 describes the use of procedures and functions,
including external procedures and functions, which are declared

with Prime's EXTERN attribute.

Chapter 10 offers a detailed discussion of how to input and
output data in Prime Pascal.

e Chapter 11 lists standard Pascal functions.
Appendixes
e Appendix A summarizes Prime extensions and restrictions to

standard Pascal: It also references the chapter in which each
extension or restriction is discussed.

Appendix B illustrates how Prime Pascal data types are
represented in storage.

Appendix C lists the ASCII character set, which Prime Pascal
uses.

Appendix D lists guidelines for interfacing Pascal to some of
Prime's other high-level languages.

1-3 Second Edition, Update 1

19.2

UPD4303-192

Error Messages

Pascal compiler error messages, which were designed to be
self-explanatory, appear on your terminal at compile time, and in the
listing file if one is created. Therefore, the messages are not listed
in this book.

RELATED DOCUMENTS

In addition to the Pascal Reference Guide, you will most likely need
other documents to help you take full advantage of Prime's powerful
utilities, which are separately priced products. These documents are
listed below.

Prime User's Guide

Complete instructions for creating, loading, and executing programs in
Prime Pascal or in most Prime languages, plus extensive additional
information on Prime system utilities for programmers, are found in the
Prime User's Guide. The Prime User's Guide and the Pascal Reference
Guide are both essential to the Pascal programmer.

The Prime User's Guide also contains a complete gquide to all Prime
documentation.

Draft Proposal "X3J9/81-093" Programming Language Pascal

The definitive reference for standard Pascal is The Draft Proposal
"X3J9/81-093" Programming Language Pascal. Fvery installation that
uses Pascal extensively should have a copy of this proposed standard,
which may be obtained from American National Standards Institute, 1430
Broadway, New York, NY 10018.

New User's Guide to EDITOR and RUNOFF

Prime's EDITOR is an interactive line-oriented text-editing utility.
It is used to enter and modify text in the computer. New programs that
do not rely on cards or tapes can be input to the system at a terminal
using EDITOR.

The New User's Guide to EDITOR and RUNOFF contains a complete descrip-
tion of the EDITOR, and describes RUNOFF, Prime's text-formatting
utility. It also provides a basic introduction to the Prime system for
those with little or no computer experience.

Second Edition, Update 1 1-4

INTRODUCTION TO PRIME PASCAL

EMACS Primer and EMACS Reference Guide

Prime's screen editor, EMACS, can also be used to input and modify new
programs. The Primer is designed for users who do not know EMACS. The
reference guide is a quick reference for users already familiar with
EMACS.

LOAD and SEG Reference Guide

Ordinarily, to load and execute programs you need only the information
given in the Pascal Reference Guide or the Prime User's Guide. If you
wish to control the load process in more detail, or use the full range

of Prime loader capabilities, see the LOAD and SBG Reference Guide.

Subroutines Reference Guide

Prime offers a large selection of applications-level subroutines and
PRIMOS operating system subroutines, which can be declared as external
in procedure/function declarations of a Pascal program, then referenced
fram any point within the program. These routines are described in the
Subroutines Reference Guide. (See also Chapter 9 of this guide.)

Source Level Debugger Guide

When you specify the -DEBUG option at compile time, you can generate
code that can be used to debug your program with Prime's debugger
utility, DBG. For complete information, oconsult the Source Level

Debugger Guide.

1-5 ‘ Second Edition

DOC4303-191

INTERFACE TO OTHER LANGUAGES

Since all Prime high-level languages are alike at the object-code
level, and since all use the same calling conventions, object modules
produced by the Pascal compiler can reference and be referenced by
modules produced by the FORTRAN 77, FORTRAN IV, (OBOL, PL/I Subset G,
etc. compilers, provided that certain restrictions are observed:

e All I/O routines must be written in the same language. However,
Pascal I/0 should be used if and only if the main program is
written in Pascal.

e There must be no conflict of data types for variables being
passed as arguments. For example, an INTHEGER in Pascal should
be declared as FIXED BINARY(15) in PL/I-G. See Appendix B for a
description of Pascal data storage formats and Appendix D for
data type compatibility.

® Modules compiled in 64V or 32I mode cannot reference or be
referenced by modules compiled in R mode. Modules in 64V or 32I
mode may reference each other if they are otherwise compatible.

Pascal program units can also reference PMA (Prime Macro Assembler)
routines, and vice versa. For information, see the Assembly Landuade
Programmer's Guide.

Appendix D offers guidelines for interfacing Pascal with other
languages.

Second Edition 1-6

PART II

Compiling, Loading, and

Executing Programs

Using the Pascal

Compiler

INTRODUCTJON
Prime's Pascal compiler, like Prime's other high-level compilers, can
output an object (binmary) file, a source 1listing file, error and
statistical information, and other useful messages and information.
Upon compilation, error messages are printed at the termimal as the
compiler encounters them. Your program is checked syntactically,
according to the rules of Prime Pascal. Prime extensions and
restrictions, which are listed in Appendix A, will be identified when
discussed in this chapter and throughout the book.
This chapter discusses:

e How to invoke the compiler

e How to specify options to the compiler

® The significances of various messages that are printed during
compilation

e Filename conventions
e The meanings of compiler options
® How to specify switches to the compiler

e The meanings of compiler switches

2-1 Second Edition

18.0

DOCA303-191

INVOKING THE QOMPILER

The Pascal compiler is invoked from PRIMOS command level with the
PASCAL command:

PASCAL pathname [-option 1] [-option 2] ... [-option n]
pathname is the pathname of the Pascal source program to be compiled.

options are the names of various compiler functions, which you can
invoke on the command 1line to provide valuable information and input
while you compile, load, and execute your program. Every option name
must begin with a hyphen. For example:

PASCAL TEST —-RANGE —LISTING
Given this command, the compiler will check for out—of-bounds values of

array subscripts and generate a source listing file for the program
TEST.

QOMPTL.ER ERROR MESSAGES

If the compiler finds no syntax errors in your program's code, it will
tell you there are no errors after it has successfully compiled the
program.

For example:

OK, PASCAL TEST
[PASCAL Rev. 19.1]
0000 ERRORS (PASCAL-REV 19.1)

However, for every error encountered in the program, an error message
will automatically be printed at the terminal and in the source listing
if a 1listing is being generated. The general format of an error
message is:

line—-number ling—of—code

ERROR xxx SEVERITY y BHGINNING ON LINE line-number

explanation

1line—number The number of the line where the error occurred

line-of-code The erroneous line of code

XXX The error code number
y Severity code number
explanation Description of the error and possible remedies

Second Edition 2-2

PASCAL (OMPILER

The circumflex (or arrow) that appears just above the error message
points to the actual erroneous line of code. The following is an
example of an error message:

OK, PASCAL TEST.PASCAL

[PASCAL Rev. 19.1]
14 EISD {main program}

FRROR 31 SEVERITY 3 BEGINNING ON LINE 14
Missing dot at program end.

When compilation is complete and all the error messages have been
listed on the terminal, the compiler tells you how many errors were
encountered and the maximum severity. For example:

0013 ERRORS (PASCAL-REV. 19.1)
MAXIMUM SEVERITY IS 3

The significance of the severity code is:

Severity Description

1 Warning

2 Error that the compiler has attempted to
correct

3 Uncorrected error (prevents optimization,
code generation, and therefore successful
compilation)

4 Error that immediately halts compilation

A severity 1 or 2 error will not prevent execution of your program, but
the output may be unpredictable.

Error Messages Involving $INCLUDE Files

A $INCLUDE file is a Prime extension. It is a file that is inserted
into the main program after the $%INCLUDE statement. The $INCLUDE
statement is followed by the name of the file to be included. The
format is:

$INCLUDE 'filename';
%INCLUDE files can hold any legal Pascal code — declarations as well
as executable statements. The files could, for example, contain long

lists of wvariable declarations. (For more information on $%INCLUDE
files, see Chapter 5.)

2-3 Second Edition, Update 1

UPD4303-192

If you compile a program that inserts a %INCLUDE file, and there are
compile-time errors in that file, a special type of error message
format is printed at the terminal:

<1ine—number > line—of—code

ERROR xxx SEVERITY y BEGINNING ON LINE line-number IN FILE 'filename'
explanation

line-number The number of the line in the S$INCLUDE file where
the error occurred. (Lines of code in $INCLUDE
files are numbered separately, and the numbers are
enclosed in angle brackets in the listing file.)

line-of-code The actual erroneous line of code in the $%INCLUDE

file.
XXX The error code number.
y Severity code number.
'filename’ The name of the %INCLUDE file.

explanation Description of the error and possible remedies.

The caret points to the erroneous line of code.
Here is an example of a %INCLUDE file error message:
<23> VAR a : integer;
ERROR 2 SEVERITY 3 BEGINNING ON LINE 23 IN FILE 'test-1'
This item in a variable definition list is
already defined in this block.
The compiler adds the number of errors from the $INCLUDE file to the

number of errors in the main program, and gives the total number of
errors at the end of compilation.

FILENAME CONVENTIONS

When you compile a program with the PASCAL command, and there are no
severity 3 or 4 errors, the compiler creates an object (binary) f£ile.
It also creates a source listing file if the -LISTING option is
specified on the command line. In order for you and the compiler to
identify and compile the source file and create the object and listing
files, the "suffix" conventions, which are described below, should be
used to name these files on Rev. 18 (or higher) systems.

Second Edition, Update 1 2-4

PASCAL COMPILER

The Suffix Filename Conventions

With the suffix method, files are easily identified and created
according to the type of suffix appended to the program name. The
source file has a .PASCAL suffix, the object file has a .BIN suffix,
and the listing file has a .LIST suffix. If your program is called
TEST, you should name the source file:

TEST. PASCAL
Upon compilation, the compiler creates an object file called TEST.BIN

and a source listing file called TEST.LIST. 'The compiler will put
these files in the directory to which you are attached.

When the file is loaded into memory for execution, Prime's loader, SEG,
creates an executable file called TEST.SEG. (For information on
loading and executing Pascal programs, see Chapter 3.)

When you compile your program called TEST.PASCAL, you do not have to
include the .PASCAL suffix. The command:

OK, PASCAL TEST

and the command:

OK, PASCAL TEST,PASCAL
will produce the same result.

For more information on the suffix filename conventions, see Chapter 3.

The Prefix Filename Conventions

If you do not have a Rev. 18 (or higher) system, or your installation
does not use the suffix method, you would use the old-style prefix
filename conventions. The prefix method identifies the object,
listing, and executable files with prefixes. If the source file is
named TEST, the compiler will create an object file called B_TEST and a
listing file called I, TEST.

When the program is loaded for execution, Prime's loader, SEG, creates
an executable file, which you would have named #TEST, for example. The
prefix method is less efficient than the suffix method because you, not
SHG, name the executable file., (For more information on 1loading and
executing programs, see Chapter 3.)

If you are using the prefix method and your source file is called TEST,
compile it by simply issuing the command:

OK, PASCAL TEST

For more information on the prefix filename conventions, see Chapter 3.

2-5 Second Edition

18.0

DOCA303-191

COMPILER OPTIONS

Prime's Pascal compiler offers several compiler functions, or options,
that can provide useful information while you compile, 1load, and
execute your program. For instance, you can debug your program with
Prime's source level debugger, DBG, by specifying the -DEBUG option.
The -XREF option provides a list of all your program's variables and
the number of every line on which each variable is referenced.

Options are invoked on the PASCAL command line and may be given in any
order. For example:

PASCAL TEST -DEBUG -XREF
PASCAL TEST -XREF -DEBUG

Most compiler options come in pairs. For each option, there is an
option having the opposite effect. Most option pairs direct the
compiler to do or not do some action. A few present a choice between
two actions. One member of each pair 1is always the default. For
example, consider this pair of options:

-DEBUG
—NODEBUG

-NODEBUG is the default. Unless -DEBUG is specified, code for the
source level debugger will not be generated.

Note

Pascal compiler option defaults are set in a special "driver
program” on the Master Disk. At some point, the users at your
installation might want to change a default. Your System
Adninistrator can change defaults by following the procedure in
the System Administrator's Guide. It is recommended that only
your System Administrator have access to the driver files on
the Master Disk.

Table 2-1 lists options that are commonly used and not commonly used.
For each pair of options in Table 2-1, the Prime-supplied default is
underlined. Same options have an argument in addition to the option
specification. The argument follows the option and is not preceded by
a hyphen. For example:

—-BINARY NO

A list of option pairs, along with detailed descriptions, follows Table
2-1.

Second Edition 2-6

PASCAL COMPILER

Table 2-1

Options Commonly Used and Not Commonly Used
(Defaults are underlined.)

Options Commonly Used

Options Not Commonly Used

-BINARY [argument]

-DEBUG and -NODEBUG

—ERRTTY and -NOERRTTY
-LISTING [argument]

-MAP and -NO_MAP

"OPI‘3’ _ImPIIB’ a.nd
-NOOPTIMIZE

-RANGE and -NORANGE
-UPCASE

-XREF and -NOXREF

-BIG and -NOBIG

—64V and -32I

-EXPLIST and -NOEXPLIST
—EXTERNAL and —-NOEXTERNAL
-FRN and -NOFRN

—-INPUT pathname

—OFFSET and -NOOFFSET

—PRODUCTION and —NOPRODUCTION

—SILENT and —-NOSILENT
—SOURCE pathname
—STANDARD and —NOSTANDARD

—-STATISTICS and —NOSTATISTICS

Second Edition, Update

19.2

UPD4303-192

P -BIG and —NOBIG

-BIG and -NOBIG determine the type of code generated for references to
ARRAY or RECORD formal variable parameters in a subprogram.

With -BIG, an ARRAY or REQORD formal variable parameter can become
associated with any ARRAY or REQORD, even if the ARRAY or REQORD
crosses a segment boundary.

With -NOBIG, an ARRAY or RECORD formal variable parameter can be
associated only with an ARRAY or REQORD that does not cross a segment
boundary.

See ARRAY or RECORD Type Variable Parameters in Chapter 9 for details.

P> -BINARY [argument]

The -BINARY option generates an object (binary) file. If this option
is not given, -BINARY YES will be assumed. The argument may be:

pathname Object code will be written to the file pathname.

YES Object code will be written to the file named
program.BIN, or B program, in the user's UFD, where
program is the name of the source file. (This is the
default.)

NO No object file will be created. Specified when only a
syntax check or listing is desired.

P -DEBUG and —NODEBUG

The -DEBUG option generates code for Prime's source level debugger.
With -DEBUG, the object file is modified so that it will run under the
debugger. Execution time increases, and the code generated will not be
optimized.

-NODEBUG, the default, causes no debugger code to be generated.

See the Source Level Debugger Guide for information about debugging
programs.

P -ERRTTY and —NOERRTTY

The -ERRTTY option prints error messages at the user's terminal.
—NOERRTITY suppresses this function.

Second Edition, Update 1 2-8

PASCAL COMPILER

P> -EXPLIST and -NOEXPLIST

-EXPLIST inserts a pseudo—assembly code listing into the source
listing. Each statement in the source will be followed by the
pseudo-PMA (Prime Macro Assembler) statements into which it was
compiled. For information on PMA, see the Assembly Language

Programmer's Guide.

-NOEXPLIST causes no assembler statements to be printed to the listing
file.

P> -EXTERNAL and —NOEXTERNAL

—-EXTERNAL creates an object file that can be linked to from other
procedures and functions. This option is similar to the $E+ compiler
switch, except that -EXTERNAL cannot be suppressed or resumed during
compilation. (S$E+ switch is discussed at the end of this chapter.)

—-NOEXTERNAL causes no external procedure definitions to be generated.

P> -FRN and —NOFRN
These options control generation of floating-point round instructions.

-FRN causes an FRN instruction to be generated before every FST
(floating store) instruction in the code produced by the Pascal
compiler. For explanations of these instructions, see the Assembly
Lanquage Programmer's Guide. The FRN option improves the accuracy of
single-precision, floating-point calculations at some runtime
performance expense.

-NOFRN will cause no FRN instructions to be generated before FSTs.

P> -INPUT pathname
The ~INPUT option, which is identical to the -SOURCE option, is
obsolete and not useful. -INPUT designates the source file pathname to
be compiled:

PASCAL -INPUT pathname
It is not useful because it produces the same results as:

PASCAL pathname

pathname must not be designated more than once on the command line.

2-9 Second Edition

18.3

DOCA303-191

p -LISTING [argument]

The ~-LISTING option controls creation of the source listing file. The
argument may be:

pathname Listing will be written to the file pathname.

YES Listing will be written to the file named program.LIST,
or I, program, in the user's UFD, where program is the
name of the source file.

TTY The listing will be printed at the user terminal.

SPOOL The listing will be spooled directly to the line
printer. Default SPOOL arguments are in effect.

NO No listing file will be generated.

When no -LISTING option is given, -LISTING NO will be the default.
When -LISTING is given with no argument, -LISTING YES will be the
default.

p -MAP and -NO_MAP

-MAP is the default and makes no user-visible changes to the listing
file. The "map" of variables is included in the listing file. If -MAP
is specified, a listing file will be generated.

The -NO_MAP option generates a listing file that includes only the

program and error messages without a "map" of variables and their
locations in memory.

p -OFFSET and —NOQFFSET

—-OFFSET appends an offset map to the source listing. For each
statement in the source program, the offset map gives the hexadecimal
offset in the object file of the first machine instruction generated
for that statement.

—-NOOFFSET causes no offset map to be created.

Second Edition 2-10

PASCAL QOMPILER

’ -OPTIMIZE, —-OPT1l, —NOOPT1, -OPT3, -NOOPT3, and —NOOPTIMIZE
These options control the optimization phase of the compiler.

-OPTIMIZE, the default, will cause the object code to be optimized.
Optimized code runs more efficiently than nonoptimized code, but takes

somewhat longer to compile.

The —OPT1 option optimizes less code and generates less efficient code
than —-OPTIMIZE, but compilation time is faster than —OPTIMIZE. -NOOPT1l

is the default.

The —OPT3 option optimizes more code and generates more efficient code
than -OPTIMIZE, but compilation time is slower than —OPTIMIZE. -NOOPT3

is the default.

When -NOOPTIMIZE is invoked, optimization does not occur. Execution
time is slowest, and compile time is fastest.

P> -PRODUCTION and -NOPRODUCTION

-PRODUCTION produces alternative option—controlling code £for the
debugger.

-PRODUCTION is similar to DEBUG, except that the code generated will
not permit insertion of statement breakpoints. Execution time is not
affected.

-NOPRODUCTION will cause no production-type code to be generated.

P> -RANGE and —NORANGE

-RANGE checks for out-of-bounds values of array subscripts and
character substring indexes. Error—checking code is inserted into the
object file. If an array subscript or character substring index takes
on a value outside the range specified when the referenced data item
was declared, a runtime error will be generated. Range checking
decreases the efficiency of the generated code.

With -NORANGE, out-of-bounds values will not be detected. The program
will be more vulnerable to errors, but will execute more quickly.

2-11 Second Edition, Update 1

19.2

| 19.2

| 19.2

UPD4303-192

P> -SILENT and -NOSILENT

-SILENT suppresses severity 1 error messages. Severity 1 error
messages will not be printed at the terminal and will be omitted from
any listing file.

—NOSILENT causes severity 1 error messages to be retained.

P> -SOURCE pathname
The —-SOURCE option, which is identical to the -INPUT option, is
obsolete and not useful. -SOURCE designates the source file pathname
to be compiled:

PASCAL —SOURCE pathname
It is not useful because it produces the same results as:

PASCAL pathname

pathname must not be designated more than once on the command line.

P> -STANDARD and —NOSTANDARD
The —STANDARD option generates a severity 1 error message when your

code's syntax is non-ANSI standard Pascal. -—NOSTANDARD does not cause
a severity 1 error to be generated.

P> -STATISTICS and —NOSTATISTICS

The —STATISTICS option lists compilation statistics at the terminal
after each phase of compilation. For each phase the list contains:

DISK Number of reads and writes during the phase, excluding
those needed to obtain the source file

SECONDS Elapsed real time

SPACE Internal buffer space used for symbol table, in 16K byte
units

PAGING Disk I/0 time used
CPU CPU time used in seconds, followed by the clock time
when the phase was completed

—NOSTATISTICS causes no statistics to be printed.

Second Edition, Update 1 2-12

PASCAL (OMPILER

P> -UPCASE

The -UPCASE option causes the compiler to map lowercase variables to
uppercase. With -UPCASE, the compiler does not distinguish between
lowercase variables and uppercase variables, except within character
strings.

P> -XREF and -NOXREF

The -XREF option appends a cross-reference to the source listing. A
cross-reference lists, for every variable, the number of every line on
which the variable was referenced.

~-NOXREF causes no cross-reference listing to be generated.

P 64V and -321

These determine the addressing mode to be used in the object code.
—64V is a segmented virtual addressing mode for 16-bit machines. -32I
is a segmented virtual mode, which takes maximum advantage of the
32-bit architecture of Prime's more advanced models (P450 and up).

COMPILER OPTION ABBREVIATIONS

Most compiler options have abbreviations that are accepted by the
compiler. For example, instead of typing -LISTING on the command line,
you could simply type -L. A list of Prime's recommended abbreviations,
along with a summary of options in straight (nonpaired) alphabetical
order, is given in Table 2-2.

2-13 Second Edition, Update 1

19.2

UPD4303-192

Table 2-2

Summary of Compiler Options and Abbreviations
(Defaults are underlined.)

Option Abbreviation Significance

-BIG -BIG Generate boundary-spanning code

-BINARY -B Create object file

~-DEBUG -DE Generate debugger code

~ERRTTY —ERRT Print error messages at terminal

-EXPLIST -EXP Generate an expanded source
listing

—~EXTERNAL —-EXT Generate externmal procedure
definitions

-FRN -FRN Generate floating-point round
instructions

-INPUT -I Designate source file

-LISTING -L Create source listing

-MAP -MA Print listing file with map

~NOBIG -NOB Don't generate boundary-spanning

- code

—NODEBUG -NOD Don't generate code for debugger

—NOERRTTY —NOERRT Don't print error messages at
terminal

~NOFRN —NOFRN Don't generate FRN instruction

—-NO_MAP -NOM Don't include a map in 1listing
file

—NOOFFSET —NOOF Don't append an offset map to
source listing

-NOOPTIMIZE —-NOOP Don't optimize object code

—NOOPT1 —NOOPT1 Don't optimize less code

—NOOPT3 —NOOPT3 Don't optimize more code

Second Edition, Update 1

2-14

PASCAL QOMPILER

Table 2-2 (continued)
Summary of Compiler Options and Abbreviations

Option Abbreviation Significance

—NOPRODUCT ION -NOP Don't generate production code

—NORANGE ~NOR Don't check subscript ranges

—NOSILENT -NOSI Don't suppress severity 1 error
messages

—NOSTANDARD —NOSTAN Don't flag nonstandard Pascal
syntax

—NOSTATISTICS —NOSTAT Don't print compiler statistics

—NOXREF ~NOX Don't generate cross-reference

—OFFSET -OF Append offset map to source
listing

—OPT1 -OPT1 Optimize less object code

-OPTIMIZE -OP Optimize object code

—-OPT3 —OPT'3 Optimize more object code

—-PRODUCTION -P Generate production code

-RANGE -R Generate code to check subscript
ranges

—SILENT -SI Suppress severity 1 error
messages

-SOURCE -S Designate source file

—STANDARD ~STAN Flag nonstandard Pascal syntax

—STATISTICS —STAT Print compiler statistics

—UPCASE -UP Map lowercase variables to
uppercase

—XREF -X Generate cross-reference

-32I -3 Produce 321 mode code

-64V -6 Produce 64V mode code

2-15

Second Edition

19.1

19.1

18.2

18.3 |

18.3|

DOC4303-191

COMPILER SWITCHES

Some compiler functions can be controlled through the use of compiler
switches specified within the source program,

A compiler switch is written as a comment — text enclosed in the
comment delimiters (* *) or {} or /* */ — with a dollar sign as the
first character. Immediately following the $, a letter designates the
specific switch. A + or - sign thereafter indicates the turning on or
off of the switch. This format up to and including the + or - sign
must be followed strictly, or the switch will be ignored by the

compiler. Any note, if desired, may be written after the + or - sign
and before the final comment delimiter. Examples:

{SL+}

{$P+}

/*SA - Compiler will ignore this switch because space precedes —.*/
{$A- Compiler recognizes this switch.}

(*$E+, SL— Compiler will only recognize the first switch.*)

(*$E+*) (*SL— Compiler will recognize both E+ and L- switches.?*)

Multiple switches, written as separate comments, can be used to control
the compilation of a specific part of a program.

The available compiler switches and their meanings are as follows:

Switch Meanin Default
A Controls the generation of code A-
used to perform array bounds
checking at runtime. A-

suppresses the generation; A+
resumes it.

L Controls the printing of source L+

lines to the listing file at
compile time if a listing file
was requested. I~ suppresses
the printing of source lines
(source text); L+ resumes it,
assuming that a listing file
was requested.

Second Edition 2-16

Switch

Meanin

Controls the definition of
globally defined procedures and
variables (also called common
blocks) . Pascal ©procedures/
functions can be separately
compiled by including {$E+} at
the beginning of the module. (A
detailed discussion is presented
in Chapter 9.)

Controls page breaks (or page
"ejects") in the listing file.
{$P+} causes the printing of
lines in the 1listing file to
stop on the current page (at the
line just above {$P+}) and to
resume printing at the top of
the next page. The default P-
causes continuous printing of
lines from page to page.

2-17

PASCAL COMPILER

Default

Second Edition

18.3

Loading and

Executing Programs

The PRIMDOS SBEG utility, and SEG's subprocessor LOAD, load and execute
all Pascal programs. This chapter provides you with enough knowledge
to begin loading and executing programs. ILoading is described in more
detail in the Prime User's Guide. For extended loading features, as
well as a complete description of all SEG commands, including those for
advanced system—level programming, see the LOAD and SEG Reference Guide

and its updates.

LOADING PROGRAMS

When a Pascal program is loaded for execution, the following files and
libraries should be loaded in this order with the SBEG utility:

1. The program's object (binary) file, which is created upon
compilation. (See Chapter 2 for information on compiling
Pascal code.)

2. The object files of separately compiled subprograms, if any.
The subprograms should be loaded in the order in which they are
called by the main program.

3. The Pascal library.

4, Other Prime libraries, if needed.

5. The standard system libraries.

3-1 Second Edition, Update 1

UPD4303-192

When all of these items are loaded and all external calls are resolved,
SEG returns a LOAD OOMPLETE message. Your program is then ready for
execution.

Here is a simple example of loading a Pascal program called
TEST.PASCAL. User input is underlined:

OK, SEG —-LOAD Enter SEG's LOAD subprocessor.

[SEG rev 19.1]

$ LOAD TEST.BIN Load the main program's object file.

$ LIBRARY PASLIB Load the Pascal library.

$ LIBRARY Load the standard system libraries.

LOAD COMPLETE Loader indicates load is complete.

$ QUIT Save the executable file and return to PRIMOS.
OK,

In the above example, SEG's LOAD and LIBRARY commands load the main
program and the libraries. The QUIT command saves your executable
file, or SEG file, and returns you to PRIMOS command level.

The Procedure to Be Followed

The SEG loader is invoked with the SEG command. Depending on how new
your compiler is and what your system's restrictions are, you would
either use the new, more efficient (Rev. 18 and higher) suffix
conventions, or the old-style prefix conventions.

If you are using the suffix method — that is, if your source filename
has a .PASCAL suffix as explained in Chapter 2 —— use the -LOAD option
on the command line to enter LOAD's subprocessor. For example:

SEG -LOAD
Pre-Rev. 18 systems do not support the -LOAD option.

with the suffix method, SEG automatically generates a suffixed
executable file. For example, if your object file is called TEST.BIN,
SEG produces an executable file named TEST.SEG. The —LOAD option
automatically enters the LOAD subprocessor and sets up an executable
file. This eliminates a step in the load procedure.

Note

The prefix loading method is still available for use on all
systems. If you do not have a Rev. 18 (or higher) compiler, or
your installation does not use the suffix method, your source
filename need not have a .PASCAL suffix. The procedure for
loading programs with the prefix method is listed later in this
chapter.

Second Edition, Update 1 3-2

LOADING AND EXECQUTING PROGRAMS

The Suffix Loading Procedure: If you use the suffix method, follow
this procedure to load programs:

l.

Invoke the SBEG loader with the SEG -LOAD command., You will
enter the LOAD subprocessor, and LOAD's $ prompt symbol will
appear. (SHG's prompt symbol is #, but it does not appear when
you use the -LOAD option on the command line.)

Load the program's object file with the LOAD command
(abbreviated LO). For example:

$ LO TEST

It is not necessary, though it is acceptable, to load TEST.BIN
instead of TEST.

Load the object files of any separately compiled subprograms
with the LOAD command in the order in which they are called by
the main program.

Load the Pascal library, PASLIB, with the subprocessor's
LIBRARY command (abbreviated LI):

$ LI PASLIB

Load other Prime libraries, if needed, such as the sort
library, VSRTLI, or the applications 1library, VAPPLB. For
example:

$ LI library-name
Load the standard system libraries:

$ LI

At this point, you should receive a LOAD COMPLETE message. If
you do not receive the message, use the MAP 3 or MAP 6 command
to identify the modules that were not loaded, and load them.
If the unidentified module is caused by a misspelled subprogram
name, repeat the load. In the unlikely event that some other

SHG error messages appear, see the LOAD and SEG Reference
Guide.

The QUIT command (abbreviated Q) saves the executable file,
exits the SBEG utility, and returns you to PRIMOS command level.
Use QUIT if you do not want to execute the program immediately
fram inside the subprocessor. (Execution is discussed later in
this chapter.)

3-3 Second Edition

18.0

18.0

DOCA303-191

Here is an example of a user's dialog with the SBG utility during a
load procedure using the suffix method:

OK, SEG -LOAD Enter SEG's LOAD subprocessor.

[SEG rev 19.1]

$ LO TEST Load the main program's object file.

$ LO subprogram—name Load separately compiled subprograms.

$ LI PASLIB Load the Pascal library.

$ LI library-name Load other Prime libraries, if needed.

S LI Load the standard system libraries.

LOAD COMPLETE Loader indicates load is complete.

$ QUIT Save executable file and return to PRIMOS.
OK,

After your load is complete, you should have the following suffixed
files in your directory:

e TEST.PASCAL (the source file)
e TEST.BIN (the object file)
e TEST.SEG (the executable file)

e TEST.LIST (the source listing file, if you created one with the
-LISTING option at compile time)

The Prefix Loading Procedure: If you do not have a Rev. 18 (or higher)
system, or if you do not use the suffix method, you would use the
old-style prefix method. You cannot use the -LOAD option on a
pre-Rev. 18 system, and the source filename need not have a suffix. A
typical source filename would be TEST, not TEST.PASCAL.

With the prefix method, filenames are identified by the attached
prefixes. For example, the object file is called B_TEST, not TEST.BIN,
the listing file is called I_TEST, not TEST.LIST, and the executable
file is called #TEST, not TEST.SEG. You, not SHEG, enter the LOAD
subprocessor and set up an executable file by issuing the LOAD command
followed by the name of the executable file, #TEST. For example:

OK, SEG
[SBG rev 17.5]

LO #TEST
$

Note that the SHG prompt # appears without the -LOAD option on the
command line.

Second Edition 3-4

LOADING AND EXECUTING PROGRAMS

After you have entered the LOAD subprocessor and set up an executable
file, and the subprocessor's $ prompt appears, you must load the object
file, the object files of separately compiled subprograms, the Pascal
library, and the standard system libraries. For example:

$ LO B_TEST
$ LO B_subprogram—name
$ LI PASLIB
$LT

A step-by-step procedure follows:

1. Invoke the SEG utility with the SEG command. SEG's # prompt
will appear.

2. Enter SEG's LOAD subprocessor and set up an executable file
with the LOAD command (abbreviated LO) followed by the program
name with a # prefix:

LO #TEST

3. Load the main program's object file (B_TEST) after the
subprocessor's $ prompt appears. For example:

$ LO B_TEST
4. Load the object files of any separately compiled subprograms
(B_subprogram-name) in the order in which they are called by
the main program.

5. Load the Pascal library, PASLIB, with the subprocessor's
LIBRARY command (abbreviated LI):

$ LI PASLIB
6. Load other Prime libraries, if needed, such as the sort
library, VSRILI, or the applications library, VAPPLB. For
example:

$ LI library-name

7. Load the standard system libraries:

$ LI

3-5 Second Edition

18.0

DOCA303-191

8.

At this point, you should receive a LOAD COMPLETE messade. If
you do not receive the message, use the MAP 3 or MAP 6 command
to identify the modules that were not loaded, and load them.
If the unidentified module is caused by a misspelled subprogram
name, repeat the load. In the unlikely event that some other
SEG error messages appear, see the LOAD and SEG Reference
Guide.

The QUIT command (abbreviated Q) saves the executable file,
exits the SEG utility, and returns you to PRIMDS command level.
Use QUIT if you do not want to execute the program immediately
from inside the subprocessor. (Execution is discussed later in
this chapter.)

Here is an example of a user's dialog with the SEG utility during a
load procedure using the prefix method:

OK, SEG Enter the SEG utility.

[SEG rev 17.5]

LO #TEST Enter LOAD and set up executable file.

$ LO B TEST Load main program's object file.

$ LO B_subprogram-name Load separately compiled subprograms.

$ LI PASLIB Load Pascal library.

$ LI library-name Load other Prime libraries, as needed.

$ LI Load the standard system libraries.

LOAD COMPLETE Loader indicates load is complete.

$ QUIT Save executable file and return to PRIMOS.

OK,
After the load is complete, you should have the following files in your
directory:

e TEST (the source file)

e B TEST (the object file)

® #¥TEST (the executable file)

e I TEST (the source listing file, if you created one with the

-LISTING option at compile time)

Table 3-1 provides a comparison and quick reference of suffix and
prefix filenames.

Second Edition 3-6

LOADING AND EXECUTING PROGRAMS

Table 3-1
Suffix and Prefix Filename Conventions
File Suffixed Name Pref ixed Name

Source file fil ename. PASCAL filename

Object file filename.BIN B _filename
Subprogram subprogram-name. BIN B_subprogram—name
Executable SEG file fil ename. SEG #f il ename

Source listing file filename.LIST L_filename

EXEQUTING PROGRAMS

Once your program is loaded and you have returned to the PRIMDS command
level, execute your program with the SBEG command:

SEG filename
filename is the name of your program's executable file. If your
program was loaded with the suffix method, and your executable file is
called TEST.SEG, issue the command:

SHG TEST

If your program was loaded with the prefix method, and your executable
file is called #TEST, issue the command:

SEG #TEST

SEG loads the executable file into segnented memory and begins
execution of the program.

3-7 Second Edition

18.0

DOC4303-191

Executing from within the Subprocessor

A shortcut to saving and executing a loaded program is available.
Immediately after receiving the LOAD COOMPLETE message, enter the
subprocessor 's EXEQUTE command (abbreviated EX). 'This command will
then save the loaded program and start executing it. Upon completion
of execution, control returns to PRIMOS command level, For example:

LOAD COMPLETE

$ EXEQUTE
OK,

Compiling, Loading, and Executing with Command Files

You can save time in compiling, loading, and executing programs by
creating a command file or CPL file that will automatically compile,
load, and execute a program for you. For instructions on how to create

command and CPL files, see the Prime User's Guide and the CPL User's
Guide.

Second Edition 3-8

PART III

Prime Pascal LLanguage

Reference

Pascal LLanguage
Elements

This chapter, and all the other chapters in Part III, serve as a
reference to the Pascal language — standard Pascal as well as Prime
extensions and restrictions. ‘This language reference is not intended
to be a Pascal tutorial. It does not teach you Pascal.

You are expected to be familiar with Pascal, but not necessarily with
Prime computers. If you do not know Pascal, consult a commercially
available text, such as the ones listed in Chapter 1.

Prime extensions and restrictions to standard Pascal are clearly
identified throughout the book. For a summary of Prime extensions and
restrictions to Pascal, along with references to where they are
discussed in the book, see Appendix A.

4-1 Second Edition

DOC4303-191

DEFINTTIONS

The terms defined below are used repeatedly throughout the book. Many
other terms are defined in later chapters.

Term

Program

Program Unit

Subprogram

Heading

Object

Block

Global

Second Edition

A main program consists of a heading and a block
and ends with a period. (See Chapter 5.)

A program unit can be a main program, a procedure,
or a function.

A subprogram is either a procedure or a function.
It consists of a heading and a block and ends with
a semicolon. (See Chapter 9.)

A heading gives a program unit a name and lists the
program's parameters. (See Chapters 5 and 9.)

An object is an identifier used in a program unit.
(Identifiers are defined later in this chapter.)

A block is the body of a program unit. It consists
of a sequence of declarations (declaration part)
describing data objects to be used in the program
unit and a sequence of statements (executable part)
describing actions to be performed on these
objects. (See Chapters 5 and 9.)

A program unit can have up to 64 levels of nesting
of blocks within blocks. If block B is defined
within block A, then B is called the inner block or
inner level, and A is called the outer block or
outer level. If block C is defined within block B,
then B becomes an outer block to inner block C, but
B is still an inner block to block A. The
outermost block of a program is the program block
itself. (See Figure 4-1.)

The data objects, such as variables, declared in
the outer block of a program unit are accessible at
all inner levels of the program unit and are termed
global. If block B is defined in block A and block
C is defined in block B, then an object declared in
A is said to be global to B and C, and an object
declared in B is said to be global to C. (See
Figure 4-1.)

Objects declared at the program level (the
outermost level) are global to all inner levels and
can be referenced throughout the entire program.

PASCAL LANGUAGE ELEMENTS

BLOCK A

(Variables declared here are
global to Blocks A, B, and C.)

BLOCK B

(Variables declared here are local
to Block B and global to Block C.)

BLOCKC

(Variables declared here
are local to Block C.)

Local and Global Variables in
Inner and Quter Blocks

Figure 4-1

4-3 Second Edition

DOCA303-191

Local

Scope

Actual
Parameter

Formal
Parameter

If an object is declared in a block, it is
available or significant only within that block,
and is said to be local to that block. However, if
block B is within block A, then objects local to A
are global to B and have significance in both A and
B. (See Figure 4-1.)

The block in which an object is declared defines
the scope of that object. In other words, the
scope of an identifier or label is the block in
which the declaration or definition of the
identifier or label is valid.

An actual parameter is a variable or expression
passed to a subprogram. Actual parameters appear
in the parameter list of a procedure or function
call (procedure statement or a function designator)
within a block. (See Chapter 9.)

A formal parameter is a variable appearing in the
parameter list of a subprogram heading. When the
subprogram is invoked, the value of each actual
parameter is passed to a corresponding formal
parameter. A formal parameter can also be called
" " parameter or a "placeholder". (See Chapter
9.)

PASCAL, CHARACTER SET

The Prime Pascal ANSI, ASCII 7-bit character set consists of:

e Twenty-six uppercase and 26 lowercase letters of the English
alphabet (A to Z, a to z).

e Ten digits (0 - 9).

e Twenty-one punctuation symbols. These symbols are used by
themselves and in certain combinations to represent operators
and delimit textual elements as described in Table 4-1.

Appendix C lists the character set.

Second Edition

4-4

PASCAL LANGUAGE ELEMENTS

Table 4-1
Pascal Punctuation Symbols

Symbol

Description

]

~e

()

<O

Addition

Identity

Set union

STRING concatenation (Prime extension)

Subtraction
Sign—inversion
Set difference

Multiplication
Set intersection

Division (real)

Equal to

Set equality

Type identifier and type separator

Constant identifier and constant
separator

Less than

Greater than

Subscript list or set constructor
delimiters

Decimal point

Record selector
Program terminator

Parameter or identifier separator

Variable name and type separator
Label and statement separator

Statement separator
Record field separator
Declaration separator

File or pointer variable indicator

Parameter list, identifier list,
or expression delimiters

Not equal to
Set inequality

4-5 Second Edition, Update 1

| 19.2

UPD4303-192

Table 4-1 (continued)

Pascal Punctuation Symbols

Description

/* ¥/
(* *)

Less than or equal to
Set inclusion ("is contained in")

Greater than or equal to
Set inclusion ("contains")

Assignment Operator
Subrange Specifier
Comment delimiters
Comment delimiters (Prime extension)
Comment delimiters

Character—string delimiter
(apostrophe)

Bit Integer AND operator (Prime extension)

Bit Integer OR operator (Prime extension)

Second Edition, Update 1 4-6

PASCAL LANGUAGE ELEMENTS

KEYWORDS

Keywords are special symbols with fixed meanings and purposes, which
cannot be redefined. They can be used only as specified in the syntax
for a Pascal program unit. Keywords may be written in lowercase
letters, uppercase letters, or any combination of them. Lowercase
letters will be interpreted the same as their uppercase counterparts.
Table 4-2 lists all the available keywords.

Table 4-2
Pascal Keywords
AND FUNCTION PROCEDURE
ARRAY GOTO PROGRAM
BEGIN IF RECORD
CASE IN REPEAT
QONST LABEL, SET
DIV MOD THEN
DO NIL TO
DOWNTO NOT TYPE
ELSE OF UNTIL
END OR VAR
FILE OTHERW ISE* WHILE
FOR PACKED WITH
$INCLUDE*

* Prime extension keyword

DENTIFI

Identifiers are names used in Pascal source program units to denote
programs, constants, types, variables, procedures, or functions.
Identifiers may be written in either lowercase or uppercase letters or
any combination of them., The compiler will convert all lowercase

letters to their uppercase counterpart for the purpose of identifier
recognition.

A Pascal identifier can be a user-defined identifier or a standard
identifier.

4-7 Second Edition

19.1

19.1

DOCA303-191

User—defined Identifiers

User-defined identifiers are names supplied by the user. These names
cannot be keywords.

A user—defined identifier must begin with a letter or a dollar sign,
which may be followed by any combination of letters, digits,
underscores, and dollar signs. It may contain up to 32 significant
characters in its spelling. An identifier with more than 32 characters
will result in a severity 1 error at compile time. This is a Prime
restriction.

standard Identifiers

Standard identifiers are names with predefined meanings and purposes,
such as standard function names like SQR and ORD. If necessary, you
may globally or locally redefine any standard identifier for another
purpose. However, if an identifier is redefined, it cannot be used for
its origimal purpose within the scope of that redefinition. For
example, you may create a variable named ABS. Then, however, you would
no longer be able to use the standard absolute value function ABS in
the block containing the declaration of that variable. Table 4-3 lists
all the available standard identifiers. Detailed descriptions are
contained in appropriate chapters of this book.

NUMERIC QONSTANTS

Pascal has four forms of numeric constants — integer, longinteger,
real, and longreal.

An integer or a longinteger is a whole number with an optional sign.
It is either a constant of INTEGER or LONGINTHGER type respectively or
a constant of a subrange of INTEGER or LONGINTEGER type respectively.

A real or a longreal number has a fractional part. It is a constant of
REAL or LONGREAL type respectively.

The LONGINTEGER and LONGREAL data types are Prime extensions.
LONGINTEGER allows you to use 32-bit whole numbers. LONGREAL allows
you to use 64-bit real numbers. (See Chapter 6.) LONGINTHGERS have
values in the range -2147483648..+2147483647.

Second Edition 4-8

PASCAL LANGUAGE ELEMENTS

Constants
FALSE
Types
INTEGER
BOOLEAN
Files
INPUT
Directives
FORWARD

Functions

ABS
ARCTAN
CHR
Qs
EOF
EOLN

Procedures

CLOSE*
DISPOSE
GET

NEW

Table 4-3
Standard Identifiers
TRUE MAXINT
LONG INTEGER* REAL LONGREAL*
CHAR TEXT STRING*
OUTPUT
EXTERN*
EXP SIN
LN SOR
ODD SORT
ORD SucCC
PRED TRUNC
ROUND
PAGE RESET
PUT REWRITE
READ WRITE
READLN WRITELN

* Prime extension identifiers

4-9 Second Edition, Update 1

| 19.2

UPD4303-192

There are two ways of expressing real and longreal numbers:

1. 1In decimal notation, the number is expressed by an optional
sign, a whole number part, a decimal point, and a fractional
part. There must be at least one digit on each side of the
decimal point.

2. In scientific notation, the number is represented by a value,
followed by the letter E or D, which is followed by an
exponent., The letter E is used if the number is REAL. The
letter D is used if the number is LONGREAL. The value consists

one or more digits, and an optional

decimal point and fractional part. The exponent must be an
integer with an optional sign. The letter E or D is read as

"times 10 to the power of". This is a convenient way to

represent very large or very small numbers.

of an optional sign,

No comma may appear in a number. Examples:

Valid Integer/Longinteger Invalid Integer

23 -32,768 (No comma allowed)
-100

+40000 (longinteger)

Valid Real/Longreal Number

-0.1

1E6 (1000000)

5E-8 (0.00000005)

~-87.35E+15 (-87350000000000000)
-7.0E-6 (—0.000007)

2.1D01 (longreal)

1.234567 (longreal)

Second Edition, Update 1 4-10

Invalid Real Number

.1 (Must be a digit to
the left of the decimal

point)
1. (Must be a digit to the
right of the decimal point)
-8.0E-6.3 (Only whole number
exponents allowed)

1,234D+20 (No comma allowed)

PASCAL LANGUAGE ELEMENTS

CHARACTER-STRINGS

A character-string is a character or a sequence of characters enclosed
by apostrophes. Character-strings consisting of a single character are
CHAR type constants. Character-strings consisting of more than one
character are either STRING type constants or ARRAY [l..n] OF CHAR type
constants, where n is the number of characters in the string. The
STRING type is a Prime extension. (See Chapter 6.) To include an
apostrophe character in a string, double the apostrophe. Here are some
character string examples:

ey (single quote)
IAI

1.1
’

'THIS IS A STRING'
'Pascal’

'Don''t give up the ship.'

DECLARATIONS AND STATEMENTS

Declarations describe data objects to be executed in a program unit.
Statements perform explicit actions on the declared objects.
Declarations must precede statements in the program text. (See
Chapters 5 and 8 for detailed discussions.)

LINE FORMAT

The Pascal compiler ignores the formatting of source lines. A
declaration or statement may start anywhere on a line. More than one
declaration or statement may be written on a single line. However, a
keyword, an identifier, or a number cannot be divided between lines.

This guide uses formatting for legibility in program examples.

COMMENTS, BLANKS, AND ENDS OF LINES

Comments, blanks (except in character-strings), and ends of lines are
considered to be separators. Separators must not appear in
identifiers, keywords, or numbers. At least one separator must be
placed between identifiers, keywords, or numbers that are not separated
by one or more of the punctuation symbols given in Table 4-1. One or
more separators may occur anywhere in the program text except where it
is not recommended throughout the book.

4-11 Second Edition, Update 1

19.2

UPD4303-192

A comment has the form:
{sequence of characters}

in which the characters may be any character except the right brace }
or the character sequences *) or */, 1In Pascal, comments may be placed
anywhere blanks are allowed. Comments are inserted as notes that
indicate the purpose of a program or a section of code. Also, comments
are used to enable or disable compiler switches. (See Chapter 2.)

On many terminals, the brace characters are not available, so Prime
Pascal also allows a comment to be delimited by the character pairs (*
) and / */, Delimiters {}, (* *), and /* */ can be interchanged.
Starting and ending comment delimiters need not have the same form.
The delimiters /* */ are a Prime extension.

Second Edition, Update 1 4-12

Pascal Program
Structure

A standard Pascal program consists of a heading and a block and ends
with a period. The block may contain up to six different kinds of
declarations and a sequence of executable statements enclosed within
the keywords BEGIN and END. Figqure 5-1 1illustrates the general
structure of a program. The six different kinds of declarations, which
are shown in Figure 5-1, are LABEL, (ONSTANT, TYPE, VARIABLE, FUNCTION,
and PROCEDURE.

PROGRAM HEADING

The main difference between standard Pascal and Prime Pascal in program
structure is the heading. In Prime Pascal, the program heading is
optional. This is a Prime extension.

A program heading has the general form:

PROGRAM identifier [([file-identifier-list])];
The keyword PROGRAM must be the first word of a program heading. It is
followed by an identifier, which is the name of the program, and an
optional file-identifier—list, which is a list of files (separated by

commas) , used by the program. (Files are explained in Chapters 6 and
10.)

5-1 Second Edition

DOC4303-191

Second Edition

PROGRAM HEADING

|

LABEL

CONST

TYPE

VAR

l

FUNCTIONS

l

PROCEDURES

BEGIN

STATEMENTS

O

Program Diagram
Figure 5-1

b} BLOCK

PASCAL PROGRAM STRUCTURE

Examples of program headings follow:
PROGRAM Sample; {The file-identifier-list may be omitted.}

PROGRAM Y(OUTFILE); {It is not necessary to list all the files}
{used by the program.}

PROGRAM X() ;

PROGRAM findroot (INFUT, OUTPUT);

Note

The program heading, if present, is only checked syntactically
by the Prime Pascal compiler. The compiler does not check the
existence of the files named in the file-identifier-list.

THE BLOCK

A block is divided into two parts — declaration and executable. The
declaration part contains declarations that describe all data objects
to be used in the program. The executable part, delimited by the
keywords BEGIN and END, contains statements that specify the actions to
be executed upon these declared objects. The general form of a block
is:

[LABEL declaration;]

[CONST declaration;]

[TYPE declaration;]

[VAR declaration;]

[FUNCTION declaration;]

[PROCEDURE declaration;]
BEGIN

[statement-1 [;statement-2]...]
END.

Note

The example above shows the standard Pascal order of
declarations — LABEL, (ONST, TYPE, VAR, FUNCTION, and
PROCEDURE. You should use this standard order whenever
possible. However, in Prime Pascal, the LABEL, QONST, TYPE,
and VAR declarations can appear in any order. This is a Prime
extension.

5-3 Second Edition, Update 1

UPD4303-192

The following program contains LABEL, CONST, TYPE, VAR, and PROCEDURE
definitions:

PROGRAM EX1;
LABEL
1;
CONST
ONE = 1;
TYPE
SMALL = 1..3;
VAR
TINY : SMALL;
PROCEDURE P(VAR X : SMALL);
BEGIN {procedure P}
X :=1
END; {procedure P}
BEGIN {main program}
P(TINY) ;
IF (TINY <> ONE) THEN
BEGIN
WRITELN ('ERROR'):;
GOTO 1
END;
IF (TINY = ONE) THEN
WRITELN ('TINY = ', ONE)
1:
END. {program EX1}

This is a null program:
PROGRAM Empty;

BEGIN
END.

DECLARATION PART

The declaration part's six optional subparts — LABEL, CONSTANT, TYPE,
VARIABLE, FUNCTION, and PROCEDURE parts -— must precede the executable

part.

LABEL Declaration Part

The LABEL declaration part specifies all labels that mark statements in
the corresponding executable part. The LABEL declaration part has the
form:

LABEL label [,label]...;

Second Edition, Update 1 5-4

PASCAL PROGRAM STRUCIURE

The keyword LABEL heads this part.

Each declared label, which is an unsigned integer consisting of up to
four digits, must be unique and mark only one statement in the
executable part. However, if block B is nested in block A, a label
declared in A is allowed to be redefined in B. Example:

PROGRAM Test (OUTPUT) ;
LABEL 6;

PROCEDURE REDEFINE;

LABFL 6;
BEGIN
GOIO 6;

6: END; {of procedure REDEFINE}
BHGIN {main program}

REDEFINE;
GOT0 6;
6: END. {of program TEST}

Here is an illegal use of LABEL:

PROGRAM Test;
LABEL 5;
BEGIN

GOTO 5;

5: WRITELN ('HELIO');
GOTO 5;

5:END. {illegal}

In the example above, the label 5 marks two statements. It can only
mark one statement in a given block. This will generate a severity 3
error at compile time, and prevent successful compilation.

5-5 Second Edition

DOCA303-191

CONSTANT Declaration Part

All constants to be represented by names in a program must be declared
in the CONSTANT declaration part. Numeric constants are discussed in
Chapters 4 and 6. The form of this part is:

CONST identifier-1
[identifier—2

constant-1;
constant-2;]...

The keyword QONST heads this part.

Each identifier is a name that is associated with a specific constant.
It will be used in place of the constant throughout the entire block
containing the declaration unless the identifier is redefined.

A constant is a fixed value that may be an integer, longinteger, real,
or longreal number with an optional sign, a character-string, or a
constant-identifier (possibly signed). A constant-identifier is an
identifier that has already been assigned a constant value.

Here are some examples of CONSTANT declarations:

CONST
BLANK ="'
QuIT = 'QUIT';
TAX RATE = 0.05;
MAX = 50;
MIN = -MAX; {MAX is a constant identifier.}

Here is an example of how constants can be used:

CONST
STOP = 'END OF OPERATIONS';
MAXIMUM = 100;
VAR
I
A
BEGIN
FOR I := 1 TO MAXIMUM DO
BEGIN
READ (A[I]);
WRITELN (STOP)
END;
END.

INTEGER;
ARRAY[1l..MAXTMUM] OF INTHGER;

TYPE Declaration Part

All constants and variables in a program have types. The type of a
constant is determined by the syntax of that constant. The type of a
variable, on the other hand, must be explicitly specified in the
VARIABLE declaration part (explained later in this chapter).

Second Edition 5-6

PASCAL PROGRAM STRUCIURE

Prime Pascal provides seven standard (predefined) data types -—-
INTEGER, LONGINTHGER, REAL, LONGREAL, C(HAR, BOOLEAN, and TEXT. 1In
addition, Pascal permits users to define new data types in the TYPE
declaration part of a program. (Data types are discussed in detail in
Chapter 6.)

The TYPE declaration part, which always begins with the keyword TYPE,
has the form:

TYPE type-identifier-1
[type—-identifier-2

data-type-1;
data-type-2;]...

A type-identifier is the name of a specific data-type. It will be
associated with one or more variables in the VARIABLE declaration part.

A data-type is either a new user—defined data type or a type-identifier
that has already been associated with a new user—defined data type.

Here are some examples of TYPE declarations:

TYPE
LETTERS = 'A',.'2';
STRINGS = ARRAY[1..50] OF CHAR;
DAYSOFWORK = (MON, TUE,WED, THUR, FRI) ;
STR = FILE OF CHAR;
CH = LETTERS; {CH and LETTERS denote the same type.}

VARIABLE Declaration Part

A variable is a named data object that can assume different values
during the execution of a program. Variables to be used in the program
must be declared in the VARIABLE declaration part. The form of this
part is:

VAR identifier-1 [, identifier-2]... : data-type-1;

The keyword VAR heads this part.

Each identifier is the name of a variable contained in the program.
The variable must be explicitly associated with a data-type which
determines the range of values the variable can assume, the set of
operations that can be performed on it, and the class of standard
procedures and functions that can be used on it.

The data-type may either be one of the standard data types (INTEGER,

LONGINTEGER, REAL, LONGREAL, CHAR, BOOLEAN, or TEXT) or a
type-identifier as defined in the preceding TYPE declaration part.

5-7 Second Edition

19.1

19.1

DOCA303-191

For example, consider these TYPE declarations;

TYPE
OPERATION_SIGNS = (PLUS, MINUS, TIMES):;
EXAM SCORES = 0..100;
STRING15 = ARRAY [1l..15] OF CHAR;
DATE._RECORD = RECORD
MONTH: 1..12;
YEAR: INTHGER
END;
LETTER_SETS = SET OF 'A'..'Z';
INTEGER FILE = FILE OF INTHEGER;

Based on the TYPE declarations above, you can declare variables like
this:

VAR
OPERATORS : OPERATION_SIGNS;
SCORES : EXAM SCQORES;
STRING1, STRING2 : STRING15;
DATE : DATE REQORD;
LETTERS : LETTER_SETS;
INTEGERS : INTEGER FILE;
ROOT1, ROOT2 : REAL;
COUNTER : INTEGER;
FLAG : BOOLEAN;
FILLER : CHAR;
TEXTIN, TEXTOUT : TEXT;

The TYPE declaration and VARIABLE declaration may be combined. For
example:

g

VAR

OPERATORS : (PLUS, MINUS, TIMES);
SCORES : 0..100;
STRING1, STRING2 : ARRAY [1l..15] OF CHAR;
DATE : RECORD

MONTH : 1..12;

YEAR : INTEGER

END;

LETTERS SET OF 'A'..'Z';

INTEGERS : FILE OF INTHEGER;

However, it 1is necessary to keep the TYPE declaration and VAR
declaration separate if the variables are to be used as actual
parameters. (See Chapter 9.)

The association of an identifier and its data type is valid throughout
the entire block containing the declaration unless the identifier is
redefined. Suppose that block B is contained in block A. An
identifier declared in A can be reassigned to a variable of any type
local to B, and this redefined association is valid throughout the
scope of B. Two examples follow.

Seocond Edition 5-8

PASCAL PROGRAM STRUCIURE

Example 1:
PROGRAM SAML;
VAR
V : INTHGER;
PROCEDURE P1;
VAR
V : REAL;
Example 2:
PROGRAM SAM2;
TYPE
T = (TIME, TAPE, TIRE);
VAR
vV :T;
PROCELURE P2;
TYPE
T = ARRAY[1..5] OF INTHGER;
VAR
VvV : T;

PROCEDURE and FUNCTION Declaration Parts

Procedures and functions are the two types of subprograms in Pascal.
Every procedure or function must be declared in the PROCEDURE
declaration part or the FUNCTION declaration part of its calling
program respectively before it can be used. Procedures and functions
are discussed in detail in Chapter 9.

EXEQUTABLE PART

The executable part of a program, delimited by the keywords BEGIN and
END, contains a sequence of statements that perform explicit actions on
the data described in the declaration part of the block. All
statements are discussed in detail in Chapter 8.

5-9 Second Edition

DOCA303-191

The following example shows the executable part of a program:

{Program Heading}
PROGRAM (QONVERSION;

{Declaration Part}
VAR
CHARACTER : CHAR;
NUMBER : INTHGER;

{Executable Part}

BHGIN
READ (CHARACTER; ;
NUMBER := ORD(CHARACTER);
WRITELN(' CHARACTER ', '''', CHARACTER, '''',
' IS EQUAL TO NUMBER ', NUMBER)
END.

The $INCLUDE Directive

The 3INCLUDE compiler directive is a Prime extension to standard
Pascal. It is a Prime Pascal keyword.

$INCLUDE provides a means of directing the compiler to include the
contents of a file in the program unit at compile time. $INCLUDE files
can hold any legal Prime Pascal code — declarations as well as
executable statements. The files could ocontain very long lists of
variable declarations, for example.

The general form of $INCLUDE is:
$INCLUDE 'filename';
where filename is the name of the file to be incorporated into the
program unit at the position of $INCQLUDE. ‘The filename can be a
pathname if the included file does not reside in the current directory.
A 3INCLUDE directive can appear anywhere that a declaration or
definition of the declaration part or a statement of the executable
part can appear. An included file may contain additional $INCLUDEs. A
$INCLUDE file commonly contains:

@ Declarations that are common to more than one program unit

e Numeric key definitions, especially for the file management
system and application library

$INCLUDE directives can be nested up to seven levels.

Second Edition 5-10

PASCAL PROGRAM STRUCIURE

The following is an example of the %INCLUDE directive:

PROGRAM SAMPLE;
$INCLUDE 'VAR FILE'; {Suppose that VAR _FILE contains
. {a set of commonly used}
. {variable declarations.}

PROCEDURE P1;
$INCLUDE 'VAR FILE';

A PROGRAM EXAMPLE

The following is a somewhat more ocomplex program example, which
contains LABEL, CQONST, TYPE, VAR, and PROCEDURE declarations:

PROGRAM Bowling (INPUT, QUTPUT);

{This program computes the scores of four bowlers, the number of
spares and strikes — and the frames in which the marks were
scored — and it calculates the winner and the winning score.}

LABEL 1;

CONST
TOPFRAME = 10;

TYPE
HUMAN_TYPE
PIN_TYPE

ARRAY[1..20] OF CHAR;
ARRAY[1..22] OF INTHGER;

VAR
NAME, BALL, FRAME, N, TOTAL, BESTSQORE : INTHGER;
PLAYER, WINNER : HUMAN_TYPE;
PINS : PIN _TYPE;
INFILE : TEXT; {the input data file}

{The WINNING PLAYER procedure determines the winning player. }

PROCEDURE WINNING PLAYER;
BEHGIN {procedure winning player}
IF TOTAL > BESTSCOORE THEN
BEGIN
BESTSCORE := TOTAL;
WINNER := PLAYER
END;
READLN(INFILE) ;
BALL := 1;
TOTAL := 0
END; {procedure winning player}

5-11 Second Edition

DOC4303-191

{Open the input file, initialize integer counters to 0. Read the

player's name and write the player's name.}

BEGIN {main program}
RESET (INFILE, 'BONLINPUT'); {open the input data file}
BALL := 1; FRAME := 1; TOTAL := 0; BESTSCORE := 0;
WHILE NOT EOF (INFILE) DO
BEGIN
FOR NAME := 1 TO 20 DO
BEGIN
READ (INFILE, PLAYER[NAME]):;
WRITE (PLAYER[NAME])
END;
WRITELN;

{Read the total number of balls bowled. Using this number, read
the integer array of all the pin scores for that player,
reinitialize ball to 1 again after the read, and for each frame
calculate whether the scores are strikes, spares, or non-marks.
Write out the frame number, whether that frame was a strike, spare,
or nonmark, and write out the pin scores. }

READ (INFILE, N);
FOR BALL := 1 TO N DO
READ (INFILE, PINS[BALL]);

BALL := 1;
FOR FRAME := 1 TO TOPFRAME DO
BEGIN
IF PINS[BALL] = 10 THEN
BHGIN

TOTAL := TOTAL+PINS [BALL]+PINS[BALL + 1] + PINS[BALL + 2];
WRITELN ('FRAME ',FRAME:2,' is a strike ',
'and PIN SQORE is ',PINS[BALL]:5);
IF FRAME = TOPFRAME THEN
WRITELN ('Extra pins on strike are:',PINS[BALL+1]:3,
PINS[BALIA2]:3);
BALL := SUCC(BALL)
END

Second Edition 5-12

")

PASCAL PROGRAM STRUCTURE

EL.SE
IF PINS[BALL] + PINS[BALL + 1] = 10 THEN
BEGIN
TOTAL := TOTAL + PINS[BALL] + PINS[BALL+l] + PINS[BALIA2];
WRITELN ('FRAME ',FRAME:2,' is a spare ',
'and PIN SQORES are ',PINS[BALL] :4,PINS[BALL+1]:3);
IF FRAME = TOPFRAME THEN
WRITELN ('Extra pin on spare is:', PINS[BALI+2]:3);
BALL := SUCC(SUCC(BALL))
END
ELSE
IF PINS[BALL] + PINS[BALL + 1] < 10 THEN
BEGIN
TOTAL := TOTAL + PINS[BALL] + PINS[BALL + 1];
WRITELN ('FRAME ',FRAME:2,' is not a mark. ',
'PIN SCORES are ',PINS[BALL] :3,PINS[BALL + 1]:3);
BALL := SUCC(SUCC(BALL))
END
END; {FOR loop}

{When all the pin scores for all frames have been calculated, write
out the final score for each player.}

WRITELN ('FINAL SCORE is ',TOTAL:4);
WRITELN;
WRITELN;

{The procedure WINNING_PLAYER is called. It will keep track of
highest score and keep track of the name of the player with the
highest score, assigning the score and the name to TOTAL and
WINNER}

WINNING_PLAYER {the procedure is called here}
END; {WHILE loop}

{Write out the winner's name and the winning score, and close the
input ending the program.}

WRITE ('The winner is ', WINNER);
WRITELN;
WRITE ('with a score of',BESTSCORE:4);
CLOSE (INFILE); {close the input data file}
GO0 1; {example of GOIO statement}
1: {example of LABEL definition}

END.

5-13 Second Edition

DOCA303-191

The input data file looks like this:

peter larrington
lisa rubin

anne ladd

paul cioto

18
21
18
14

910101
04321
0

1
4
1

4
5
1

The output of this program will look like this:

peter larrington
a spare and PIN SCORES are
a spare and PIN SCORES are
a strike and PIN SQORE is
a strike and PIN SQORE is

Lo~ uds W H

FRAME 10

is
is
is
is
is
is
is
is
is
is

lisa rubin

oW H

:

is
is
is
is
is
is
is
is
is

is a spare and

not a

mark.

PIN SQORES

are

a spare and PIN SCORES are
a spare and PIN SQORES are
a strike and PIN SQORE is

not a

mark.

PIN SQORES

are

a spare and PIN SCORES are
Extra pin on spare is:
FINAL SOORE 1is 165

not
not
not
not
not
not
not
not a
not a

(VIR VLRV VR VT

mark.
mark.,
mark.
mark,
mark,
mark.,
mark.
mark.
mark,

Extra pin on spare is:
FINAL SQORE is

Second Edition

53

7

PIN SQORES
PIN SQORES
PIN SQORES
PIN SQORES
PIN SQORES
PIN SQORES
PIN SQORES
PIN SQORES
PIN SQORES

are
are
are
are
are
are
are
are
are

PIN SQORES are

2

5-14

N WHORPOAH WO

06273821
30012
10819091
01010821

WO WNO WIHEN

090917
3340732
10 6 3
010 9

PASCAL PROGRAM STRUCTURE

anne ladd

FRAME 1 is a strike and PIN SQORE is 10
FRAME 2 is a spare and PIN SQORES are g8 2
FRAME 3 is a strike and PIN SQORE is 10
FRAME 4 is a spare and PIN SQORES are 5 5
FRAME 5 is not a mark., PIN SCORES are 4 5
FRAME 6 is a strike and PIN SQORE is 10
FRAME 7 is not a mark. PIN SQORES are 8 1
FRAME 8 is not a mark. PIN SQORES are 9 0
FRAME 9 is a spare and PIN SQORES are 9 1

FRAME 10 is a strike and PIN SQORE is 10
Extra pins on strike are: 6 3
FINAL SOORE is 159

paul cioto

FRAME 1 is a strike and PIN SCORE is 10
FRAME 2 is a strike and PIN SQORE is 10
FRAME 3 is a strike and PIN SQORE is 10
FRAME 4 is a strike and PIN SQOORE is 10
FRAME 5 is a spare and PIN SQORES are 9 1
FRAME 6 is a strike and PIN SQORE is 10
FRAME 7 is a strike and PIN SQORE is 10
FRAME 8 is a strike and PIN SQORE is 10
FRAME 9 is a spare and PIN SQORES are 8 2
FRAME 10 is a strike and PIN SQORE is 10

Extra pins on strike are: 10 9
FINAL SOORE 1is 256

The winner is paul cioto
with a score of 256

5-15 Second Edition

Data Types

Every constant, variable, function, or expression must have a data
type. The data type determines the set of values a variable may assume
or a function or an expression may generate. The data type also
determines which operations may be performed on the values and how
these values are represented in storage.

This chapter summarizes the data types available in Prime Pascal
— standard Pascal data types as well as Prime extensions. There are
three Prime extension data types: LONGINTEGER, LONGREAL, and STRING.
Each of these data types is described later in this chapter.

Figure 6-1 illustrates all of the data types in Prime Pascal. The
internmal representations of data types are illustrated in Appendix B.
Appendix D offers quidelines for interfacing Pascal data types with
those of other languages. For more information about Pascal data
types, consult a commercially available text.

SCALAR DATA TYPES

Scalar data types are the fundamental data types in Pascal. All other
data types must be built from scalar data types.

Each scalar data type has a group of distinct values, called constants,
which have a defined linear ordering. Thus, each scalar type is
ordered. Any two of these constants can be compared by asking if one
is less than, equal to, or greater than the other. The total number of
constants in a type is called the cardimality of that type.

6-1 Second Edition, Update 1

19.2

19.21

UPD4303-192

DATATYPES

SCALAR STRUCTURED POINTER

N

STANDARD USER-DEFINED STRING % ARRAY RECORD SET FILE

/\

INTEGER REAL B8OOLEAN ENUMERATED SUBRANGE

LONGINTEGER * LONGREAL * CHAR

The Hierarchy of Data Types in Prime Pascal
*Prime extensions are flagged with an asterisk.

Figure 6-1

Scalar data types are divided into two classes: standard scalar data
types and user-defined scalar data types. The standard scalar types
are the predefined, built-in data types provided by Pascal. The
user-defined scalar types are data types that you create and define in
a program,

Standard Scalar Data Types

There are four standard scalar types —— INTEGER, REAL, BOOLEAN, and
CHAR -- plus two Prime extension scalar types called LONGINTEGER and
LONGREAL.

Second Edition, Update 1 6-2

DATA TYPES

The INTEGER Type: The INTHGER type comprises a subset of whole numbers
(integers), which are 16-bit, twos-complement, fixed-point binary
numbers. The values of the INTEGER type are in the range of -32768 to
432767 or -2 to +2" -1, BAn integer variable is simply declared:

VAR
I : INTHEGER;

You can use 32-bit whole numbers by simply declaring variables as
LONGINTEGER, which is a Prime extension, (See the discussion on
LONGINTEGER, which follows.) However, if you do not have a Rev. 19.1
(or higher) compiler, and want to use 32-bit whole numbers, you must
declare these numbers as the constants of a subrange of the INTEGER
type itself in a TYPE or VAR declaration:

TYPE
I = -45000..+70000;
VAR
X: I;
or
VAR

X : -155000..+999000;
A 32-bit whole number can be declared within the range:
-2147483648..+2147483647

In this subrange declaration, either the lower-bound or upper-bound
should be outside the range of INTBEGER., For example: '

Note

Comparison of unsigned integers is not supported.

There is a predefined Pascal constant called MAXINT, whose value is the
largest available integer constant of the INTEGER type. MAXINT is
32767.

6-3 Second Edition

19.1

19.1

19.1

19.1

DOCA303-191

Same examples of valid and invalid INTHGER type constants are:
valid

32767
+200

0
MAXINT
-11

Invalid
32,767 {No comma allowed}
40000 {This number is a longinteger.}

-32769 {This number is a longinteger.}
32.00 {A valid real number but not an integer}

There are five arithmetic operators: +, -, *, DIV (divide), and
MOD (modulus or remainder), and six relational operators: =, <, &, >,
<=, and >= available for the INTHGER type. Table 4-1 in Chapter 4
gives a brief description of each operator. Chapter 7 gives a detailed
discussion of all Prime Pascal operators.
There are four standard functions used frequently to produce
INTEGER (or LONGINTHGER) results. In the following examples, I is any
integer or longinteger and R is any real or longreal number:

ABS(I) {Absolute value of I}

SQR(I) {Square of I}

TRUNC (R) {R truncated to an integer or longinteger}

ROUND (R) {R rounded to an integer or longinteger}

See Chapter 11 for more information on standard functions.

The LONGINTHGER Type: The LONGINTHGER type is a Prime extension,

LONGINTEGER allows you to use 32-bit whole numbers without declaring a
subrange. For example:

VAR
I : LONGINTEGER;

This declaration means that the variable I can have a value anywhere
within the subrange -2147483648..4+2147483647.

On Prime machines an integer is a 16-bit number, within the subrange
-32768..+32767. (See the previous discussion on the INTHGER type.)

Second Edition 6-4

DATA TYPES

Note

The LONGINTEGER type is available on Rev. 19.1 (or higher)
compilers. If you do not have a Rev. 19.1 compiler and want to
use 32-bit whole numbers, you must declare these numbers as the
constants of a subrange of the INTHGER type itself. For
example:

TYPE

I = -87000..+55000;
VAR

X :I;

or

X : -4856000..+9990000;

The arithmetic and relational operators and standard Pascal functions
can be used with LONGINTHGER as well as with INTEGER. LONGINTHGER
values can also be passed as parameters to procedures and functions.

It is recommended that you do not mix INTEGER types with LONGINTHGER
types. You can assign an integer to a longinteger, but when you try to
assign a longinteger to an integer, a severity 1 error message will be
given at compile time.

LONGINTEGER constants are allowed. The compiler decides whether the
constant is an integer or a longinteger.

Consider the following program example:

PROGRAM Longint;

CONST
X = 55000;
VAR
A : INTEGER;
B : LONGINTBEGER;
C : INTHEGER;
BEGIN
B := 40000;
A := B;
C :=X;
C:=A+B
END.

In the example above, LONGINTHGER values are assigned to INTHGER
variables A and C. Each of those statements, therefore, would receive
the following severity 1 error message:

ERROR 121 SEVERITY 1 BEGINNING ON LINE zzz

A type conversion must be made in this statement and may cause the
program to fail if the conversion is not possible.

6-5 Second Edition

19.1

19.1

19.1 |

19.1

DOC4303-191

The REAL Type: The REAL type is a subset of real numbers (decimal

values). The approximate range of real numbers is -1*10* to +1*10%.
Real numbers are declared:

VAR
R : REAL;

Prime's real numbers are 32-bit numbers. As of Rev. 19.1, you can use
64-bit numbers by simply declaring them LONGREAL, which is a Prime
extension. (See the following discussion on LONGREAL.)

There are two methods of representing real constants —— the decimal
notation and the scientific notation. (See also Chapter 4.) The
letter E in scientific notation is the exponent symbol for real
numbers., (The letter D is used for longreals.) The following are
examples of valid and invalid REAL type constants:

Valid

+12.0
3.14159 decimal notation
-0.123456
23E3
-7.0E-5 scientific (floating-point) notation
+2.01E+20

Invalid

2. {No digit to the right of the decimal point}
.10101 {No digit to the left of the decimal point}
3E8.5 {Only whole number exponent permitted}

There are four arithmetic operators: +, -, *, and /, and six
relational operators: =, <>, <, >, <=, and >= applicable to the REAL
type. For more information on these operators, see Chapter 7.

The following standard functions produce REAL or LONGREAL type results.
X is either an integer, longinteger, real, or longreal number.

SIN(X) {Sine of X}

COS (X) {Cosine of X}

LN (X) {Natural logarithm of X}

EXP (X) {Exponential to the X power}
SQRT (X) {Square root of X}

ARCTAN (X) {Inverse tangent of X}

See Chapter 11 for more information on standard functions, including
ABS and SQR.

Second Edition 6—6

DATA TYPES

The LONGREAL, Type: The LONGREAL type is a Prime extension. Longreals
are 64-bit numbers, as opposed to reals, which are 32-bit numbers.
Variables are simply declared:

VAR
X : LONGREAL;

The arithmetic and relational operators and standard Pascal functions
can be used with LONGREAL as well as REAL. LONGREAL values can be
passed as parameters to procedures and functions.

It is recommended that you do not mix REAL and LONGREAL types for the
same reasons given in the LONGINTHGER discussion earlier in this
chapter.

Longreal numbers can also be represented in decimal notation or
scientific notation. The letter D signifies the exponent in scientific
notation for longreals. (The letter E is used for reals.) For
example:

12.3456789D-01 {scientific notation}
1.234567 {decimal notation}

Constants of the LONGREAL type are allowed. The compiler decides
whether the declared constant is a real or a longreal. If the constant
has more than six digits, the compiler assumes it to be LONGREAL. If
the constant has six or fewer digits, the compiler assumes it to be
REAL,, For example:

QONST
A = 5.47; {stored as REAL}
B = 35.123456; {stored as LONGREAL}

When an exponent is present in a OONST declaration, the compiler
assumes the number to be REAL if the exponent symbol is the 1letter E,
or LONGREAL if the exponent symbol is D. For example:

CONST
X = 2.1F01; {stored as REAL}
Y = 2.1D01; {stored as LONGREAL}

If the constant given is too large to fit into a real number but has an
E exponent, an error will be generated. For example:

ooNST
Z = 1.2EA5;

6-7 Second Edition

19.1

DOCA303-191

The BOOLEAN Type: The BOOLEAN type has two standard constant values:
TRUE and FALSE. When these values are compared, TRUE > FALSE.

The six relational operators =, <, &, >, <=, and >= operate on any
standard scalar types, user—defined scalar types, or the ARRAY OF CHAR
string type (discussed later in this chapter) to produce a BOQLEAN
result.

In addition, three BOOLEAN operators (OR, AND, and NOT) can be applied
only to BOOLEAN values to produce BOOLEAN results. All operators are
described in Chapter 7.

Three BOOLEAN functions (ODD, EOF, and HOLN) return BOOLEAN values TRUE
or FALSE. See Chapters 10 and 11 for more information on these
functions.

The (HAR Type: The (HAR type is a group of characters, or a "character
set", that includes both printable (graphic) and nonprintable (control)
characters. The standard character set used by Prime is the ANSI,
ASCII 7-bit character set.

Internally, each character in Prime's character set has a numeric
equivalent, which establishes a chronological order of characters or
"collating sequence"” for the character set. These values range from
octal 200 to octal 377 (decimal 128 to 255). The nonprintable
(control) characters are numbered 200 to 237 (octal) or 128 to 159
(decimal) . The printable (graphic) characters are numbered 240 to 377
(octal) or 160 to 255 (decimal). Appendix C 1lists values in the
character set.

Pascal's standard CHR function can convert a decimal number to its
corresponding character. For example:

PROGRAM Kar;
VAR

A, B : CHER;
BEGIN

A := CHR(198);

B := CHR(199);

WRITELN(A) ;

WRITELN (B)
END.

The decimal mumbers 198 and 199 stand for the characters F and G
respectively. 'The letters F and G, therefore, would be printed at your
terminal.

You can compare character values. Since 198 is less than 199:

'F' is less than 'G'

Second Edition 6-8

DATA TYPES

The following program compares all of the printable characters (decimal
160-255) in Prime's character set, using relational operations:

PROGRAM Karacter;

VAR
I : INTEGER;
BEGIN
FOR I := 160 TO 255 DO
BEGIN
WRITE (CHR(I));
IF ((CHR(I) >= 'A') AND (CHR(I) <= 'Z')) THEN
WRITELN(' This is a capital letter')
ELSE
IF ((CHR(I) >= 'a') AND (CHR(I) <= '2')) THEN
WRITELN(' This is a small letter')
ELSE
IF ((CHR(I) >= '0') AND (CHR(I) <= '9')) THEN
WRITELN(' This is a printable number')
ELSE
WRITELN(' This is punctuation or other character')
END
END.

Caution

Prime's character set is represented by the decimal numbers 128
to 255. You should not use the CHR function on integers less
than 128 or greater than 255. Any such attempt will produce
unpredictable results.

To indicate a constant of the CHAR type, place an apostrophe (a single
quote) on each side of the character. To indicate an apostrophe, write
it twice. Examples:

lAl
l'7l

1,1
’

v {Single quote}

' {Blank is considered a printable character.}

Note

A constant of the C(HAR type is always a single character.

Constructs such as '123' or 'STRING' are not constants of this

type but are constants of two more complex types called ARRAY

OF CHAR and STRING, which are described later in this chapter. 19.2
STRING is a Prime extension.

6-9 Second Edition, Update 1

UPD4303-192

As was explained earlier, each character corresponds to its own
internal integer, which is called the ordinal number of the character.
Using the standard function ORD — the opposite of CHR — you can get a
character's ordinal number. For example:

ORD('A') yields 193 {Octal value 301}
ORD('a') yields 225 {Octal value 341}
ORD('1') yields 177 {Octal value 261}

There are two more standard functions particularly useful for
processing character data — PRED (predecessor function) and SUCC
(successor function). Given a value, FPRED produces the next lesser
value and SUCC gives the next greater value. For example:

PRED('E') yields 'D' {The predecessor of 'E' is 'D'}

SUCC('E') yields 'F' {The successor of 'E' is 'F'}

PRED(8) yields 7 {The predecessor of 8 is 7}

SUCC(8) yields 9 {The successor of 8 is 9}

PRED(ORD('G')) yields 198 {The predecessor of G's ordinal
value is 198}

SUCC(ORD('F')) yields 199 {The successor of F's ordinal
value is 199}

Functions are described in detail in Chapter 1l.

The relational operators =, <>, <, >, <=, and >= can be used with all
character constants. For more information, see Chapter 7.

User—defined Scalar Data Types

There are two user—defined scalar types — enumerated and subrange.

The Enumerated Types: An enumerated type defines an ordered set of
values by listing these values.

To create an enumerated type, use the following type definition:

TYPE type-identifier = (identifier-1, identifier-2 [,identifier-3]...):

Second Edition, Update 1 6-10

DATA TYPES

The identifiers contained in parentheses are the constants of the new
enumerated type, and type-identifier is the name of the new type. For
example:

TYPE
QOLOR = (RED, YELLOW, GREEN, BLUE, PINK);
SEX = (MALE, FEMALE);
FLAG = (TRUE, FALSE);
DAYS = (MON, TUE, WED, THUR, FRI, SAT, SUN);
MONTH = (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,

DEC) ;

The ordimal number is 0 for the first (leftmost) constant and is
incremented by 1 for each successive constant. The largest allowable
ordinal number of an enumerated type is 32767 on Prime computers. The
ordering relationship between any two constants is the same as between
their ordinal numbers. Therefore:

YELL.ON is greater than RED

Variables are declared to be of these newly created data types by the
variable declarations:

VAR
QOLAURS: OQOLOR;
S: SEX;
F: FLIG;
WEEKDAY: DAYS;
MONTHS: MONTH;
The type definition and variable declaration may be combined. Example:

VAR
S : (MALE, FEMALE);

Hypothetically, if sl, s2, and s3 are valid statements, then the
following examples, based on the above declarations, are valid
statements:

WHILE WEEKDAY <= FRI DO sl;

FOR MONTHS := MAR TO SEP DO s2;

WEEKDAY := SUCC(WED) ;

F := TRUE;

IF CGOLOURS <> GREEN THEN s3;

6-11 Second Edition

19.1 |

DOC4303-191

The constants of one enumerated type may not appear in any other
enumerated type. The following example is illegal:

TYPE
FAMILLY = (MOTHER, FATHER, SISTER, BROTHER);
PARENTS = (FATHER, MOTHER); {this is illegal}

However, a type declared as a subrange of an enumerated type is legal:

TYPE
FAMILY

(MOTHER, FATHER, SISTER, BROTHER);
PARENTS

MOTHER. .FATHER; {this is legal}

The relational operators =, <>, <, >, <=, and >= are applicable on all
enumerated types provided both operands are of the same enumerated
type.

Three standard functions (SUCC, PRED, and ORD) apply to enumerated

types. These functions also apply to INTHGER, LONGINTHGER, BOOLEAN,

CHAR, and subrange types. For example, given the following type
definition:

TYPE
SHAPE = (SQUARE, CIRCLE, RECTANGLE, TRIANGLE);

then
SUCC(CIRCLE) yields RECTANGLE {Successor of CIRCLE}
PRED(CIRCLE) yields SQUARE {Predecessor of CIRCLE}

ORD(CIRCLE) yields 1 {ordinal number of CIRCLE}

ution

When the PRED value of the leftmost enumerated type element
or the SUCC value of the rightmost enumerated type element
— an out-of-bounds value — is assigned, no compile-time
or runtime errors are generated,

The Subrange Types: A subrange type is a data type that comprises a
specified range of any other already defined scalar data type, except
types REAL and LONGREAL.

To define a subrange type, use the following type definition.

TYPE type—identifier = lower-bound..upper-bound;

Second Edition 6-12

)

DATA TYPES

Both lower-bound and upper-bound are constants of the same standard
scalar type (except REAL and LONGREAL) or previously defined enumerated
type, termed the base type, and the lower—bound value must not be
greater than the upper-bound value. The type-identifier is the name of
the new data type that comprises only those base type constants between
the lower-bound and upper-bound. The following are examples of
subrange types:

TYPE

EXAMSQORE = 0..100; {Subrange of INTEGER}
DIGITS = '0'..'9'; {Subrange of CHAR}
LETTERS = 'A'..'2'; {Subrange of CHAR}

DAYS = (MON, TUE, WED, THUR, FRI, SAT, SUN); {Enumerated type}
WEEKDAYS = MON..FRI; {Subrange of DAYS}

MONTHS = (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC);
VACATION = JUN..SEP; {Subrange of MONTHS}
FIRST TERM = JAN..MAY; {Subrange of MONTHS}

Once the new data types are defined, they will be associated with
appropriate variables by variable declarations:

VAR
SCORES : EXAMS(ORE; {EXAMSQORE is a subrange of INTEGER
defined in the example above.}

The type definition and variable declaration may be combined:

VAR
SCORES : 0..100;

According to standard Pascal, you cannot assign an eleament that is
outside the subrange. Based on the above example, the assignment
SQORES := 95 is permissible, but SQORES := 101 is not.

Caution

Prime's compiler will not give you an error message when you
mistakenly assign an element that is outside the subrange.

Any operations that are normally performed on scalar types can be
applied to subrange types. For example, if you have a subrange of
integers, you can use any operation that you would normally use on
integers.

6-13 Second Edition, Update 1

19.2

19.2

UPD4303-192

Constants of subranges of types INTEGER and LONGINTEGER can either be
16-bit or 32-bit twos-complement, fixed-point binary numbers
respectively. Examples:

CONST
NUMBERS = -33000..+33000; {32-bit binary numbers}
LIMITS = 40000..60000; {32-bit binary numbers}
YEARS = 1700..1900; {16—bit binary numbers}

STRUCTURED DATA TYPES

A structured data type is characterized by the type of its components
and by its structuring method. A component may have a scalar or
structured data type. Although a structured data type can be quite
sophisticated, it is ultimately built up from scalar data types.

There are five basic structured data types — STRING, ARRAY, REQORD,
SET, and FILE. The STRING type is a Prime extension., Each of these
data types can be declared in a TYPE or VAR declaration.,

Caution

The keyword PACKED is not supported on Prime Pascal. This is a
Prime restriction. Use of PACKED will generate a severity 1
error at compile time.

THE STRING TYPE

The STRING data type is a Prime extension., Similar to the PL/I-G
CHARACTER VARYING type, the STRING type makes it easy to manipulate
character strings in Prime Pascal. Unlike an array of characters,
which must contain a precise number of character elements, STRING
allows you to assign, compare, concatenate, read, write, and pass
character strings that have a varying number of elements.

For information on passing Pascal strings to PL/I-G CHARACTER VARYING

strings and vice versa, see Appendix D, INTERFACING PASCAL TO OTHER
LANGUAGES .,

Second Edition, Update 1 6-14

DATA TYPES

Declaring Strings

A variable of type STRING is declared in this form:

VAR
string-identifier : STRING[n];

The string-identifier is the variable of STRING type, and n is the
maximum number of character elements allowed in the string. This
number is called the maximum length of the string. If n is not given
in a STRING declaration, the maximum length is 80 by default.

Consider the following example:

VAR
A : STRING; {80 characters}
B : STRING[5]; {5 characters}
C : STRING[10]; {10 characters}
BEGIN
B 'HI';
C := '"HELLO';
WRITELN (C)
END.

nn

The maximum length of string A is 80 characters. Strings B and C have
maximum lengths of 5 and 10 respectively. During execution, at the
WRITELN statement, B contains two characters and C contains five
characters. Therefore, variables declared as type STRING can hold
character-string values of any length less than or equal to the maximum
length of the string. The length of a character string assigned to a
STRING variable is called the operational length of the string. 'Thus,
in the example above at the WRITELN statement, string B has a maximum
length of 5 and an operational length of 2. String C has a maximum
length of 10 and an operational length of 5. The operational lengths
may change when new values are assigned to the character strings.

You can use QONST and TYPE declarations with STRING. For example:

CONST

STRING_LENGTH = 20;
TYPE

STRING_2 = STRING[2];

STRING_5 = STRING[5];

STRING_20 = STRING[STRING _LENGTH] ;
VAR

ST2 : STRING 2;
ST5 : STRING_5;
ST20 : STRING_20;
Note
A string can be declared to have a maximum length of 32767

characters and a minimum length of 1 character.

6-14A Second Edition, Update 1

19.2

19.2

UPD4303-192

The Null String

A null string, which is specified by '', is allowed. Null strings can
be used to initialize strings. You may assign a null string, but an
attempt to write a null string will generate a runtime error. The null
string is also a Prime extension. Here is an example of a null string
assignment:

VAR
S : STRING[10];
BEGIN

S :="'";

Assigning Strings

Strings can be assigned to one another. When the value of one string
is assigned to another string, the operational length is also assigned.

Note

A character literal string consists of one or more characters
enclosed in single quotes. It should not be confused with a
string, which is a variable that represents a STRING type
value. Character literal strings, such as 'HELLO' or
'greetings', may be assigned to strings.

Here is an example that assigns character 1literals to strings and
assigns one string to another string:

VAR
ST2 : STRING[2]:
ST5 : STRING[5];:

BEGIN
ST2 := 'HI';
STS := 'HELLO';
ST5 := ST2 {operational length of ST5 is 2}
{and its value is 'HI'}
END.

If the operational length being assigned is larger than the maximum
length of the string receiving the assignment, the excess characters
are truncated. For example:

VAR
ST2 : STRING[2];
STS : STRING[5];

BEGIN
ST5 := '"HELLO';
ST2 := STS {value of ST2 is now 'HE'}
END. {and its operational length is 2}

Second Edition, Update 1 6-14B

DATA TYPES

Here is another example of string assignments:

QONST
STR_LENGTH = 10;
VAR
A : STRING;
B : STRING[4];
C : STRING[8];
D : STRING[STR_LENGTH];

BEGIN
B := 'four'; {operational length is 4}
B := 'fo'; {operational length is 2}
D := '1234567890"'; {operational length is 10}
D := '12345'; {operational length is 5}
D := B; {value of D is '"fo'}
D := '123456';
B := D; {value of B is '1234'}
A :="''; {this is a legal assignment}

WRITELN(A) {but this will cause a runtime error}
END.,

Here are two rules governing string assignments:

e If the operational length of the string being assigned (the
sending string) is less than or equal to the maximum length of
the receiving string, then the entire string value is assigned,
and the receiving string assumes the operational length of the
sending string.

e If the operational length of the sending string is greater than
the maximum length of the receiving string, then only the number
of characters in the sending string equal to the maximum length
of the receiving string are assigned. The remaining characters
are not assigned.

Assigning Arrays and Strings to Each Other

Strings and arrays of characters can be assigned to one another through
the use of two functions, STR and UNSTR. The STR function converts an
array of characters or a single character to a string, and the UNSTR
function converts a string to an array of characters or to a single
character. The STR and UNSTR functions are Prime extensions.

The result of the STR function is a string with a length of the same

number of characters as the array of characters argument. The result
of an STR function may be used anywhere a string may be used.

6-14C Second Edition, Update 1

19.2

19.2

UPD4303-192

The result of the UNSTR function is an array of characters or a single
character. The number of characters in the newly formed array is
determined by context. That is, the context of whatever array length
is expected determines the length. The result of an UNSTR function may
be used anywhere an array of characters is expected. Here are some
specific rules governing the use of the UNSTR function:

e If the result of the UNSTR function is being assigned to an
array of characters, then that result will have the same number
of characters as the receiving array of characters.

e If the result of the UNSIR function is being passed to a
procedure or function, then that result will have the same
number of characters as the formal parameter.

e If the result of the UNSTR function is being compared to an
array of characters, then that result will have the same number
of characters as the array of characters to which it is being
compared.

e If the UNSTR function is used in any other context, the length
of the resultant array will be the same as the operational
length of the string argument.

Here is an example that converts strings and arrays of characters to
one another using STR and UNSTR:

VAR
ST4 : STRING[4];
ST8 : STRING[8];
AR4 : ARRAY[1l..4] OF CHAR;
ARS8 : ARRAY[l..8] OF CHAR;

BEGIN
AR4 := 'JUNK';
ST4 := STR(AR4); {value of ST4 is 'JUNK'}
AR4 := 'BLUE';
ST8 := STR(AR4); {value of ST8 is 'BLUE'}
BAR8 := 'LAVENDER';
ST4 := STR(AR8); {value of ST4 is 'LAVE'}
ST4 := 'JUNK';
AR4 := UNSTR(ST4); {value of AR4 is 'JUNK'}
ARS8 := UNSTR(ST4); {value of ARS8 is 'JUNK '}
ST8 := 'LAVENDER';
AR4 := UNSTR(ST8) {value of AR4 is 'LAVE'}
END.

Arrays of characters are discussed later in this chapter.

Second Edition, Update 1 6-14D

DATA TYPES

Comparing Strings

String comparisons are allowed according to the following rules:

e If the strings have the same operational length, a normal
comparison operation will be done.

e If the operational lengths of the strings are different, blanks
will be assumed to follow the shorter string.

Here is an example that compares strings:

VAR
ST4 : STRING([4]:;
ST8 : STRING[8];
BEGIN
ST4 := 'BLUE';
ST8 := 'LAVENDER';
IF ST8 > ST4 THEN
WRITELN('Pass') {this will pass}

ELSE
WRITELN('Fail');
ST8 := ST4; {ST8 is now 'BLUE'}

IF ST8 = ST4 THEN
WRITELN('Pass') {this will pass}
ELSE
WRITELN('Fail')
END.,

Concatenating Strings

Prime Pascal's concatenation operator (+) concatenates two strings into
one string., The concatenation operator is a Prime extension. There is
no concatenation operator in standard Pascal.

The resultant length of the newly formed string equals the sum of the

operational lengths of the two concatenated strings. Either or both of
the strings may be a character literal string.

6-14E Second Edition, Update 1

19.2

UPD4303-192

Here is an example that uses concatenation:

VAR
ST2 : STRING[2]:
ST4 : STRING[4]:;
ST6 : STRING[6]:
ST11 : STRING[11];
AR2 : ARRAY[l..2] OF CHAR

AR4 : ARRAY[1l..4] OF CHAR;
AR6 : ARRAY[1l..6] OF CHAR;
BEGIN
ST2 := 'HI';
ST4 := 'BALL';
AR2 := 'GO';
AR4 := 'BLUE';
ST6 := ST2 + ST4; {ST6 equals 'HIBALL'}
ST6 := ST4 + ST2; {ST6 equals 'BALLHI'}
ST4 := ST2 + ST4; {ST4 equals 'HIBA'}
ST11 := ST2 + ST4 + 'HELIO'; {ST1l equals 'HIHIBAHELIO'}
ST4 := ST2; {ST4 equals 'HI'}
ST4 := ST2 + ST4; {ST4 equals 'HIHI'}
ST6 := STR(AR2) + STR(AR4); {ST6 equals 'GOBLUE'}
AR6 := UNSTR(STR(AR4) + STR(AR2)); {AR6 equals 'BLUEGO'}
ST2 := 'PA';
ST4 := 'SCAL';
19.2 ST6 := ST2 + ST4;

IF ST6 = 'PASCAL' THEN
WRITELN('Pass') {this passes}
ELSE
WRITELN('Fail');
IF ST6 = ST2 + ST4 THEN
WRITELN ('Pass again') {this passes}
ELSE
WRITELN ('Fail');
IF ST6 = 'PA' + 'SCAL' THEN
WRITELN ('This works too') {this passes}
ELSE
WRITELN ('Fail');
AR6 := UNSTR(STS) ;
IF AR6 = 'PASCAL' THEN
WRITELN ('Passes to array') {this passes}
ELSE
WRITELN ('Array fails');
IF AR6 = UNSTR(ST2 + ST4) THEN
WRITELN ('Passes to array again') {this passes}
ELSE
WRITELN ('Array fails')
END.

The concatenation operator is also discussed in Chapter 7.

Second Edition, Update 1 6-14F

DATA TYPES

Reading and Writing Strings

When reading a string, you can enter any number of characters up to the
maximum length. Consider the following program, which contains a READ
statement :

VAR

ST10 : STRING([10];
BEGIN

READ(ST10)
END.

If the input were:
ABC(carriage return)

the program would assign 'ABC' to ST10 when the carriage return is
entered.

If the input were:
ABCDEFGHIJK

the program would complete execution the moment the 'K' character was
typed, because the 'J' character is the tenth character.

When you use a REAILN statement, the number of characters before the
carriage return becomes the operational length of the string up to the
maximum length of that string.

Consider the following example:

VAR

ST5 : STRING[5];
BEGIN

READLN (ST5)
END.

If the input were:
ABC(carriage return)

the value of ST5 would be 'ABC' and ST5 would have an operational
length of 3 characters.

6-14G Second Edition, Update 1

19.2

19.2

UPD4303-192

If the input were:
ABCDE (carriage return)
or
ABCDEFGHIJKLM(carriage return)

the value of ST5 would be 'ABCDE' and the operational length of ST5
would be 5 characters. In either case, the program would not terminate
until the carriage return was typed.

When reading two strings with one READ or READLN statement, you must
enter all of the characters of the first string, up to its maximum
length, before you can begin entering characters for the second string.
Consider the following example:

VAR

ST1, ST2 : STRING[10];
BEGIN

READ(ST1, ST2)
END.

If the input were:
ABCDEFGHIJKLM

the characters 'ABCDEFGHIJ' would be assigned to ST1, and 'KLM' would
be assigned to ST2. In order to assign characters to ST2, 10
characters must be assigned to STI1.

If you enter less than 10 characters, or if you enter only 10
characters, then the null string is assigned to ST2. (Null strings
cannot be written out.)

When a string is written, the default field width is the operational
length of the string. If a field width is specified, and the width of
the field to be printed is greater than the operational length of the
string, then the string is right justified in the field and blank
padded on the left, If the specified field width is too small, then
only the specified number of characters will be printed.

Here is an example of writing strings with different field widths:

VAR
ST10 : STRING[10];
BEGIN
ST10 := 'ABCDEFGH'; {eight characters}
WRITELN(ST10) ;
WRITELN(ST10:12) ;
WRITELN(ST10:2)
END.

Second Edition, Update 1 6-14H

DATA TYPES

The output will look like this:

ABCDEFGH
ABCDEFGH
AB

Here is another example that reads and writes strings to and from the
terminal and PRIMOS data files:

VAR
ST5 : STRING[5];
ST10 : STRING[10];
STRINGINPUT : FILE OF CHAR;
STRINGOUTPUT : FILE OF CHAR;
BEGIN
WRITE('Enter an ST5 value: ');
READLN(ST5) ;
WRITELN(ST5) ;
WRITE ('Enter an ST10 value: ');
READLN(ST10) ;
WRITELN(ST10) ;
WRITELN(STS + ST10);
RESET (STRINGINPUT, 'STINPUT');
READLN (STRINGINPUT, ST5);
REWRITE (STRINGOUTPUT, 'STOUTPUT');
WRITELN (STRINGOUTPUT, ST5);
READLN (STRINGINPUT, ST10);
WRITELN (STRINGOUTPUT, ST10);
WRITELN (STRINGOUTPUT, ST5 + ST10);
CLOSE (STRINGINPUT) ;
CLOSE (STR INGOUTPUT)
END.

Passing Strings to Procedures and Functions

Strings can be passed as parameters to procedures and functions. They
may be passed by value or by reference and may return as arguments from
functions.

The STRING assignment rules, given earlier in this chapter, apply to
passing strings to procedures and functions.

6-141 Seocond Edition, Update 1

19.2

19.2

UPD4303-192

Here is an example that passes strings to procedures and functions:

TYPE
STRING 6 = STRING[6];
STRING 3 = STRING[3];
STRING_10 = STRING[10];
VAR

GLOBAL_10 : STRING_10;
GLOBAL,_6 : STRING 6;
PROCEDURE PROC1(S : STRING 6); {GLOBAL 10 is passed to S}

BEGIN {and is truncated to 'TESTIN'}
WRITELN (S) {'"TESTIN' will be written}
END;
PROCEDURE PROC2(VAR S : STRING 6); {GLOBAL 10 is assigned to}
BEGIN {the parameter GLOBAL_6}
S := GLOBAL_10
END;
FUNCTION FUNC(S : STRING 6) : STRING_3; {GLOBAL_10 becomes}
BEGIN {substring 'TIN'}
FUNC := SUBSTR(S, 4, 3) {inside function}
END;
BEGIN {main}

GLOBAL,_10 := 'TESTING':;

PROC1 (GLOBAL,_10) ;

PROC2 (GLOBAL_6) ;

WRITELN(GLOBAL_6); {'TESTIN' will be written}

GLORAI_10 := FUNC(GLOBAL_10);

WRITELN (GLOBAL_10) {'TIN' will be written}
END.

For complete information on procedures and functions, see Chapter 9.

String Functions

There are seven other built-in functions that manipulate strings in
addition to the STR and UNSTR functions. All of these functions are
Prime extensions. They are:

e LENGTH

e INDEX

e SUBSTR

e DELETE

e INSERT

e TRIM

e LTRIM

Second Edition, Update 1 6-14J

DATA TYPES

The LENGTH Function: This function takes a string as an arqument and
returns an integer that is the operational length of the string. A
string literal may not be used with this function.

The INDEX Function: This function takes two strings as arguments. It
searches the first string to determine if it ocontains the second
string. The first arqument, therefore, is the string to be searched.
The second argument is the string to be searched for. The function
returns an integer that gives the position in the first string that
indicates the beginning of the second string. If the second string is
not found in the first string, a zero is returned. The first argument
must be a string and not a string literal. The second argument may be
a string, a string literal, or a character.

The SUBSTR Function: This function takes three arguments -- a string
and two integers. It yields a substring of the first argument, which
is a string. The second argument is the starting position of the
substring in that string. The third argument is the desired length of
the substring. The function returns a string. The first argument must
be a string and not a string literal.

The DELETE Function: This function takes three parameters —- a string
and two integers. It deletes a specified substring within the given
string, and returns a string. The function takes the Ffirst argument,
the string, starting at the position specified by the first integer,
and deletes the number of characters specified by the second integer.
The first argument must be a string, not a string literal.

The INSERT Function: This function takes three arguments —— two
strings and an integer. It inserts the second string into the first
string, and returns a string. The integer specifies the position in
the first string where the second string is to be inserted. The first
arqument must be a string and not a string literal. The second
argument may be a string, a string literal, or a character.

The TRIM Function: This function takes a string as an argqument and
returns a string. It removes all trailing blanks, The argument must
be a string, not a string literal.

The LTRIM Function: This function takes a string as an argument and
returns a string. It removes all leading blanks. The argument must be
a string, not a string literal.

6-14K Second Edition, Update 1

19.2

19.2

UPD4303-192

Here is an example that uses all these functions:

VAR
ST8 : STRING[8];
ST10 : STRING[10];
I, J, K : INTEGER;
BEGIN
ST10 := 'ABCDEF';
I := LENGTH(ST10); {I equals 6}
ST8 := 'CDE';
I := INDEX(ST10, ST8); {I equals 3}
J := INDEX(ST8, ST10); {J equals 0}
ST8 := SUBSTR(ST10, 3, 2); {ST8 equals 'Cp'}
ST8 := DELETE(ST10, 3, 2); {ST8 equals 'ABEF'}
ST8 := INSERT(ST8, 'HI', 2); {ST8 equals 'AHIBEF'}
ST10 := 'A B C '; {10 characters}
ST10 := TRIM(ST10); {ST10 equals ' A B C' - 8 characters}
ST10 := LTRIM(ST10) {ST10 = 'A B C' - 7 characters}
END.

THE ARRAY TYPE

An array is a data structure that is a collection of elements of
identical type. This group of elements is identified by one variable
name. An element of an array is accessed by its location within the
array. For example, an array can be declared:

VAR
A : ARRAY[1..10] OF INTEGER;

The array called "A" has 10 consecutive integer elements. The first
element is A[l], the second is A[2], and so on. The number in square
brackets that identifies the array element is called the index. You
can read and write an array element this way:

READ(A[1]) ;
WRITE(A[1]);

Second Edition, Update 1 6-14L

DATA TYPES

To read and write all of the elements, you can say:

FOR I :=1 TO 10 DO
BEGIN
READ(A[I]);
WRITE(A[I])
END;

Here is an example of how ARRAY types are declared within a TYPE
declaration:

TYPE
NUMBERS = ARRAY[1..50] OF INTHGER;

The new data type (ARRAY type), which has 50 integer elements, is
called NUMBERS. In the VAR declarations, therefore, you can declare
variables to be of type NUMBERS. For example:

VAR
X, Y : NUMBERS;

The identifiers X and Y are arrays, each having 50 integer elements.
The type of array index, termed the index type, must be a scalar data
type other than REAL or LONGREAL. The data type of the array itself
can be any data type, including arrays and other structured types.

Three examples of arrays follow:

Example 1:
TYPE
SAMPLE1l = ARRAY[1..100] OF REAL;
VAR
R : SAMPLE]L;

This declaration indicates that R will be a 100-element array of
REAL, The first element will be accessed by R[1], the second by
R[2], and the hundredth by R[100].

Example 2:

TYPE
DAYS = (MON, TUE, WED, THUR, FRI, SAT, SUN);
SAMPLE2 = ARRAY[DAYS] OF INTHGER;

VAR
D : SAMPLE2;

These declarations indicate that D will be a seven—element array of

INTHGER. The first element will be referenced by D[MON], the
second by D[TUE], and the seventh by D[SUN].

6-15 Second Edition

DOCA303-191

Example 3:

TYPE
EXAMSQORE = 0..100;
VAR
STUDENTSQORE : ARRAY[1..50] OF EXAMSCQORE;
BEGIN
STUDENTSQORE[1] := 98
END.

To define arrays as extermal in a program, that is, so that they can be
used by external subprograms, you can use the following technique:

VAR
{Loocal variables:}

D: ARRAY[1..10] OF INTEGER;
Y: (BLUE, PINK, YELLOW, RED);

{SE+ Defines external variables}

A: ARRAY[-32767..+32767] OF REAL;
C: ARRAY[-32767..+32767] OF CHAR;

{SE- Ends external definitions}

INTHGER is allowed as an array index. The array must be declared as an
external array with the {$E+} compiler switch. For example:

VAR
{SE+}
A : ARRAY[INTHGER] OF INTHGER;
18.3 {SE-}

The declaration above produces the same results as:
A : ARRAY[-32768..+32767] OF INTHGER;
LONGINTEGER is not allowed as an array index.
The maximum size of an array is 64K words long. If an array is

declared as external with the {SE+} compiler switch, then more space
will be allocated to the array.

Note
The {SE+} compiler switch is similar in function to the PL/I

EXTERNAL attribute or the FORTRAN (OMMON block. The {SE+}
compiler switch is discussed in Chapters 2 and 9.

Second Edition 6-16

DATA TYPES

Array of Characters: A line of text, or "character string", can be
represented as an array of characters. This particular array is called
ARRAY OF CHAR.

Unlike a STRING type character string, which can have values of a
varying number of character elements, an array of characters must
contain a precise number of character elements.

A variable receiving an array-of-character assignment or a formal
parameter receiving an array-of-character value must be declared to
have the precise number of elements as the array being assigned or
passed.

Therefore, if you want to manipulate character strings of varying
length, use STRING. If you want to manipulate character strings that
always contain a precise number of elements, use ARRAY OF CHAR. (The
STRING type 1is a Prime extension, and it is fully discussed earlier in
this chapter.)

A typical VAR declaration of an ARRAY OF CHAR would be:

VAR
A : ARRAY[1..60] OF CHAR;

The identifier "A" is an array with 60 character elements. A[l] is the
first character, and A[60] is the last. Any character string value
assigned to A must have 60 characters.

Here is an example of how an ARRAY OF CHAR (string) type is declared
within a TYPE declaration:

TYPE
STRING1 = ARRAY[1..10] OF CHAR;

Two more examples follow:

TYPE
STRING1 = ARRAY[1..10] OF CHAR;
VAR
STRING2 : STRING1;
BEGIN
STRING2 := 'ABCDEFGHIJ';
STRING2 := 'AB' {This is an invalid assignment.}
{The string must contain 10}
{characters.}
END.

6-17 Second Edition, Update 1

19.2

DATA TYPES

Here is another example:

TYPE
LENGTH = 1..30;
STRING30 = ARRAY [LENGTH] OF CHAR;

VAR
ALPHA : STRING30;
I : LENGTH;
BEGIN

FOR I :=1 TO 30 DO
READ (ALPHA[I])
END.

Note
Although Prime Pascal does not support the keyword PACKED in

type definitions, an ARRAY OF CHAR is always stored as a packed
ARRAY OF CHAR on Prime computers.

6-17A Second Edition, Update 1

UPD4303-192

The result of the UNSTR function is an array of characters or a single
character. The number of characters in the newly formed array is
determined by context. That is, the context of whatever array length
is expected determines the length. The result of an UNSTR function may
be used anywhere an array of characters is expected. Here are some
specific rules governing the use of the UNSIR function:

e If the result of the UNSIR function is being assigned to an
array of characters, then that result will have the same number
of characters as the receiving array of characters.

e If the result of the UNSTR function is being passed to a
procedure or function, then that result will have the same
number of characters as the formal parameter.

e If the result of the UNSTR function is being compared to an
array of characters, then that result will have the same number
of characters as the array of characters to which it is being
compared.

e If the UNSTR function is used in any other context, the length
of the resultant array will be the same as the operational
length of the string argument.

Here is an example that converts strings and arrays of characters to
one another using STR and UNSTR:

VAR
ST4 : STRING[4];
ST8 : STRING[8];
AR4 : ARRAY[1l..4] OF CHAR;
ARS8 : ARRAY[1l..8] OF CHAR;

BEGIN
AR4 := 'JUNK';
ST4 := STR(AR4); {value of ST4 is 'JUNK'}
AR4 := 'BLUE';
ST8 := STR(AR4); {value of ST8 is 'BLUE'}
AR8 := 'LAVENDER';
ST4 := STR(AR8); {value of ST4 is 'LAVE'}
ST4 := 'JUNK';
AR4 := UNSTR(ST4); {value of AR4 is 'JUNK'}
AR8 := UNSTR(ST4); {value of AR8 is 'JUNK '}
ST8 := 'LAVENDER';
AR4 := UNSTR(ST8) {value of AR4 is 'LAVE'}
END.

Arrays of characters are discussed later in this chapter.

Second Edition, Update 1 6-18

DATA TYPES

If you are using a READ, all 30 characters must be typed in. The
remainder of the array will not be padded with blanks, according to the
standard Pascal definition of READ.

Multidimensional arrays can be read more easily with Prime's ARRAY OF
CHAR:

VAR

A : ARRAY[1..10, 1..200] OF CHAR;
BEGIN

READLN(A[1]);

This will read the first row of 200 characters into A[l]. A READ(A)
statement would generate an error because you would be trying to read
an array of strings, and not a single string.

For more information on multidimensional arrays, see the discussion
that follows.

Multidimensional Arrays: As defined in the previous section, the type
of an array can be any data type. If the type of an array is an ARRAY
type or a sequence of two or more ARRAY types, the array is a
multidimensional array. Example:

CONST
SIZE = 100;
VAR
SAMPLE : ARRAY[BOOLEAN] OF ARRAY[1..10] OF ARRAY[SIZE] OF REAL;
The above declaration can be simplified to more convenient forms:

VAR
SAMPLE : ARRAY[BOOLEAN, 1..10, SIZE] OF REAL;

or
SAMPLE : ARRAY[BOOLEAN] OF ARRAY[1..10, SIZE] OF RFAL;
or
SAMPLE : ARRAY[BOOLEAN, 1..10] OF ARRAY[SIZE] OF REAL;
An array can have up to eight dimensions.

In gereral, to create a multidimensional array, use the following type
definition:

TYPE type-identifier = ARRAY [tl, t2,...] OF base-type;

6-19 Second Edition

19.1

DOCA303-191

where tl, t2, etc. are index types. If three index types are
specified, the ARRAY type is called three-dimensional, and an array
elament is designated by three indexes. For example:

CONST
NUM_OF_CLASSES = 3; {3 classes}

NUM OF STUDENTS = 20; {20 students in each class}

NUM_OF EXAMS = 4; {Each student took 4 exams}
TYPE

SCORE = ARRAY [l..NUM OF CLASSES, 1..NUM_OF STUDENTS,

1..NUM OF EXAMS] OF INTEGER;
VAR

STUDENTSQORE : SCORE;

STUDENTSCORE[3, 20, 4] would designate the fourth exam of the twentieth
student in class number 3.

STUDENTSCORE[2, 10, 3] would designate the third exam of the tenth
~ student in class number 2.

e RECORD

A record is a structure consisting of a fixed number of elements,
called fields, which may be of different data types. Each record's
field has a name, called the field identifier.

To define a RECORD structure, use the following TYPE declaration:

TYPE record-identifer = RECORD
field-identifier-1: type;

field-identifier—-n: type
END;

where record-identifier is the name given to the entire record. Each
field-identifier and its associated type, which can be any type, even
another RECDRD type, are listed between the keywords RECORD and END.

Second Edition 6-20

)

DATA TYPES

Example 1:

TYPE
PERSON = RECQORD
NAME : ARRAY [1..25] OF CHER;
AGE : 0..99;
SEX : (MALE, FEMALE);
SOC_NUM : LONGINTEGER
END;

Example 2:

TYPE
QUSTOMER_RECQORD =
REQORD
NAME : ARRAY [1..30] OF CHAR;
ID NUM : INTEGER;
INVOICE _DATE : REQORD
MONTH : (JAN, FEB, MAR, AFR,
MAY, JUN, JUL, AG,
SEP, OCT, NOV, DEC);
DAY OF MON : 1..31
END; {OF the INVOICE DATE record}
DISCOUNT, AMIT PAID : REAL
END; {OF the QUSTOMER_RECORD}

Example 3:

TYPE DATE = RECORD
DAYOFWEEK : (SUN, MON, TUE, WED,
THUR, FRI, SAT);
MONTH : (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);
DAYOFMON : 1..31;
INTEGER

:

FAMILY = (FATHER, MOTHER, BROTHER, SISTER);
VAR

DATEl, DATE2 : DATE;
BIRTHDAY : ARRAY[FAMILY] OF DATE;

To access a particular record element, follow the name of the variable
by a period and the name of the element:

record-variable, field-identifier

6-21 Second Edition

DOCA303-191

Using Example 3 above, if DATEl is to contain the date:
Tuesday, July 15, 1983

the following assignment statements will be written:

DATEL .DAYOFWEEK := TUE;
DATE] . MONTH = JUL;
DATE]l .DAYOFMON := 15;

DATEL . YEAR = 1983;

If the BIRTHDAY of SISTER is:
Saturday, December 6, 1975

the following assignment statements will be written:

BIRTHDAY [SISTER] .DAYOFWEEK := SAT;
BIRTHDAY [SISTER] . MONTH = DEC;
BIRTHDAY [SISTER] .DAYOFMON := 6;

BIRTHDAY [SISTER] .YEAR = 1975;

The maximum size of a record is 64K words. If a record is declared as
external with the {SE+} compiler switch, then more space will be
allocated to the record. (For more information on the {SE+} compiler
switch, see Chapters 2 and 9.)

The references to elements in a record structure can be simplified by
using the WITH statement. The general form of the WITH statement is:

WITH record-variable-l [, record-variable-2]...DO statement

Within the statement after DO, record elements may be referred to by
field identifiers only. This form of record access allows the compiler
to generate more efficient code and allows you to write more readable
code. WITH should be used when a large number of components of a
record is to be accessed.

Second Edition 6-22

y

DATA TYPES

Using the WITH statement, you would write the previous assignment
statements as follows:

WITH DATE1 DO

BHGIN
DAYOFWEEK := TUE;
MONTH = JUL;
DAYOFMON := 15;
YEAR := 1983
END;

and

WITH BIRTHDAY[SISTER] DO

BEGIN
DAYOFWEEK := SAT;
MONTH := DEC;
DAYOFMON := 6;
YEAR := 1975
END;

Note

The WITH statement is also discussed in Chapter 8.

Records with Variants: In Pascal, different record values of the same
REQORD type need not have the same fields. In most cases, each of
these records can be divided into two parts — a fixed part, which has
fields common to all these records, and a variant part, which has
fields varying from record to record. The fixed part must precede the
variant part.

To define records with variants, use the following REQORD type
definition:

TYPE record-identifier =
REQORD
[field~identifier-1: type;]... {fixed part}
[CASE [tag-field:] tag-type-identifier QF {variant part}
variant-1l [; variant-2}...]
END;

Note

Variant field values share the same storage area. Therefore,
when a value of one field is assigned, it replaces or
"overlays" the previously assigned field value in storage.
(See Example 4.)

6-23 Second Edition

DOCA303-191

Example 1:

TYPE PERSON = RECORD
L, NAME, F NAME: ARRAY[1..20] OF CHAR;
AGE: 0..100;
SEX: (MALE, FEMALE):;
CASE MARRIED: BOOLEAN OF
TRUE: (SPOUSE_NAME: ARRAY[1l..40] OF CH2R;
STOUSE,_AGE: 0..100);
FALSE: () {No variant fields for this case}
END;

If a person is married, the field MARRIED, called the tag-field,
will be TRUE, and two additional fields, called variant fields,
will exist — SPOUSE NAME and SPOUSE AGE. These variant fields
will not exist if MARRIED is FALSE.

Example 2:

TYPE PERSON = RECORD
L. NAME, F NAME: ARRAY[1..20] OF CHAR;
AGE: 0..100;
SEX: (MALE, FEMALE);
MARRIED: BOOLEAN;
CASE BOOLEAN OF
TRUE: (SPOUSE NAME: ARRAY[1l..40] OF CHAR;
SPOUSE_AGE: 0..100)
END;

Although this is a valid example of a REQORD type definition, its
usage is not advised. The declaration of the tag-field in the CASE
clause and the definition of every possible value of the tag-field
as shown in Example 1 give better program readability.

Example 3:

TYPE
SHAPE = (POINT, LINE, CIRCLE);
FIGURE = RECORD
CASE TAG: SHAPE OF
LINE: (M, B: REAL);
CIRCLE: (A, C: REAL; RADIUS: REAL);
POINT: (Xo, Yo: REAL)

END;
VAR
V : FIGURE;
BEGIN

V.TAG := LINE;)
TAG := LINE {This assignment is invalid.}
END.

Second Edition 6-24

/

DATA TYPES

Example 4:

TYPE
DATA = (INT, BOOL, (H);
DATATYPE = RECORD
CASE DATA OF
INT: (INTERVALUE: INTHEGER);
BOOL: (BOOLVALUE: BOOLEAN) ;
CH: (CHVALUE: CHAR)

END;
VAR
DATAVALUE: DATATYPE;
BEGIN

DATAVALUE. INTERVALUE := 100;

WRITELN (DATAVALUE. INTERVALUE) ;

DATAVALUE.BOOLVALUE := TRUE;

WRITELN (DATAVALUE. BOOLVALUE) ;

DATAVALUE. CHVALUE := 'A'

WRITELN (DATAVALUE. CHVALUE) ;

WRITELN(DATAVALUE. INTERVALUE); {This will not output 100}
{because its storage space}
{has been overlaid with}
{DATAVALUE. CHVALUE }

Example 5:

TYPE
EMPTY = REQORD {The record EMPTY contains no fields; therefore,}
END; {it has a null value.}

Note

The CASE statement is discussed in Chapter 8.

The SET Type

A set 1is a collection of elements that are of the same data type,
termed the base type. A base type can be any scalar data type other
than REAL or LONGREAL. To create a SET type, use the following type
definition:

TYPE type-identifier = SET OF base-type;

The type-identifier is the name of a new SET type. You cannot have
more than 256 elements in a set in Prime Pascal. Example:

TYPE
LETTERS = SET OF 'A'..'Z'; {26 eleaments}

6-25 Second Edition

|19.1

DOCA303-191

Variables of type LETTERS are declared in the variable declaration
part:

VAR
VOWELS, LIST, EMPTY, (H : LETTERS;

Similarly, a SET can also be declared this way:

VAR
VONELS, LIST, EMPTY, CH : SET OF 'A'..'Z';

Each variable above is a set whose members are chosen fram the
alphabetic characters 'A' to 'Z'. Set members are set constants that
are always presented in a pair of square brackets []. Values of SET
constants can be assigned to the variables by following assignment
statements:

VOWELS := ['A', 'E', 'TI', 'O', 'U']; {Set members can be in}

CH = ['B', 'C', 'A']; {arbitrary order.}

EMPTY :=1 1; {A set may have no members}
{at all; it 1is called the}
{empty set.}

LIST = ['"F'.."P']; {If the set members are}

{consecutive values of the}
{base type, only the first}
{and last need be specified}
{in subrange form.}

There are three SET operators that operate on sets to produce new sets:

+ Set union

Set difference

* Set intersection
The union of two sets is a set that contains all the members of both
sets. The difference is a set that contains all the members of the
first set that are not also members of the second set. The
intersection is a set that contains all the values that belong to both
sets. For example:

['Q'l + ['P', 'Q'] yields ['P', 'Q']

[lAl’ 'Bll IEI’ IFI] —_ [IBl’ lcl' IDI] yields [IAI' |El’ lFl]

['E', 'T', '0O'] * ['A', 'E'] yields ['E']

Second Edition 6-26

DATA TYPES

There are five relational operators that ocompare sets —— the four
standard relational operators plus the set relational operator IN. The
result of the comparison is a BOOLEAN value:

= Equals

<> Does not equal

<= Is contained by

>= Contains

IN Is a member of

('A', 'B'] = ['B', 'C'] is FALSE

['A', 'B'] <> ['B', 'C'] is TRUE

['B'] <= ['B', 'C'] is TRUE

['A'..'2'] >= ['M'..'S'] is TRUE

'I' IN ['A', 'E', 'I', 'O, 'U'] is TRUE
'I' IN ['P', 'S', 'X'] is FALSE

The compiler will issue an error message when the SET operator IN is
used on a non-SET type. Operators and operations are discussed in
Chapter 7.

The FILE Type

A file is a collection or receptacle of data values that are extermal
to a program. The values within each file must be of the same data
type. Your Pascal program can take data from a file (called the input
file), process it, and output data to another file (called the output
file). These data files, which are PRIMOS files, can reside in your
directory.

Data values within files cannot be accessed at random. They must be
accessed sequentially, one at a time, in the order in which they appear
in the file.

You can declare FILE data types, and declare variables as files using
TYPE and VAR declarations. The format of the TYPE declaration is:

TYPE
type-identifier = FILE OF base-type;

6-27 Second Edition

18.3

DOC4303-191

The format of the VAR declaration is:

VAR
file—identifier : FILE OF base-type;

The base-type specifies the data type of data values in the file. It
must not be a FILE type or a structured type with a FILE component.
The type-identifier is the name of the new FILE data type. 'The
file—identifier is the name of the file. For example:

TYPE
INTEGERFILE = FILE OF INTEGER; {A sequence of internal binary}
{integers}

ARR = ARRAY[1l..15] OF REAL;
ARRAYFILE = FILE OF ARR; {A sequence of groups of 15}
{intermal binary real numbers}

CHARFILE = FILE OF CHAR; {A sequence of characters ——}
{a textfile}

Using these new FILE types you can declare:

VAR
I: INTEGERFILE; {The FILE type of each variable has already}
A: ARRAYFILE; {been defined in the previous example. }

C: CHARFILE;

You can declare file variables directly, without creating your own FILE
data types, by saying:

TYPE

AR = ARRAY[1l..1l5] OF REAL;
VAR

I : FILE OF INTEGER;

A : FILE OF AR;

C : FILE OF CHAR;

There are five Input/Output procedures — RESET, REWRITE, GET, PUT, and
CLOSE — and one BOOLEAN function, EOF (End-Of-File), that manipulate
files. Five other I/O procedures —— READ, READLN, WRITE, WRITELN, and
PAGE — and another BOOLEAN function, EQLN (End-Of-Line), manipulate
textfiles (FILE OF CHAR), although READ and WRITE work on nontextfiles
as well. Explanations of all of these procedures and functions, as
well as complete information on Input/Output in Prime Pascal, are given
in Chapter 10.

Second Edition 6-28

DATA TYPES

The TEXT File Type: There is a standard Pascal data type called TEXT.
The TEXT type is a FILE type that is identical to FILE OF CHAR. Both
TEXT and FILE OF CHAR are "textfiles" or files consisting of printable
characters, including integers and real numbers. The following
declarations, therefore, are identical:

VAR
A : FILE OF CHAR;

VAR
A : TEXT;

The following are also identical:

TYPE

A = FILE OF CHAR;
TYPE

A = TEXT;

A TEXT file or a FILE OF CHAR should not be confused with FILE OF
INTEGER and FILE OF REAL, which are files composed of internmal bimary
numbers, rather than printable characters.

A textfile may be subdivided into variable length lines. Each line in
the file is separated from the next by the ASCII control character LF
(Line Feed).

Note

Textfiles have a maximum of 256 characters per line.

PRIMOS Files Versus the Terminal: Files are usually thought of as
PRIMOS files, where data can be read from or written out to a file that
is in your directory. The data, however, can also be read from and
written to your terminal. That is, the terminmal itself is considered a
data receptacle or "terminal" file. Upon execution of your program,
you supply the data input at your terminmal, and the computer can
respond by sending back the data output to your terminal.

6-29 Second Edition

DOC4303-191

If you want to read and write data at your terminal, simply use READ,
READLN, WRITE, and WRITELN statements. You do not have to declare any
FILE types. For example:

PROGRAM Terminal;
VAR
A : ARRAY[1..10] OF CHAR;
B : ARRAY[1..20] OF CHAR;
BEGIN
READLN(A) ;
READLN(B) ;
WRITELN(A) ;
WRITELN(B)
END.

Upon execution of this program, the computer will wait for you to type
in a 10-character string and a 20-character string on separate lines
(ended by carriage returns). When it has the two strings, the computer
will send them back to your terminal.

In Prime Pascal, if you want to read and write data to or from a PRIMOS.

textfile, you must not only declare a file to be TEXT or FILE OF CHAR,
but also supply the name of the file in the RESET and REARITE
procedures. The naming of textfiles is a Prime extension. For
example:

VAR
CH : CHAR;
INFILE, QUTFILE : TEXT;
BEGIN
RESET(INFILE, 'INDATA');
REWRITE (OUTFILE, 'CUTDATA');
READ (INFILE, CH);
WRITE (QUTFILE, CH);
CLOSE (INFILE) ;
CLOSE (OUTFILE)
END.

In the example above, RESET and REWNRITE open the textfiles called
INDATA and OUTDATA, which must be enclosed in single quotes. Read and
write statements associate INFILE and QUTFILE with the actual names of
the files, INDATA and QUTDATA. The CLOSE statements must be used to
close the textfiles at the end of your program. For a complete
explanation of RESET, REWRITE, and CLOSE, as well as other I/O features
of Prime Pascal, see Chapter 10.

Second Edition 6-30

DATA TYPES

The Standard Textfiles INPFUT and OUTPUT: Pascal has two standard
textfiles, INPUT and OUTPUT. When you want to use PRIMOS data files,
you do not have to declare INPUT and QUTPUT as TEXT or FILE OF CHAR.
However, in the RESET and RBWRITE statements, you must still give the
name of the file. 1In the following example, the standard textfiles
INPUT and OUTPUT are associated with two PRIMOS data files called
INDATA and OUTDATA. Notice that INPUT and OUTPUT need not be declared
as FILE OF CHAR:

PROGRAM Primefile;
VAR
H : CHAR;
BEGIN
RESET (INPUT, 'INDATA');
REWRITE (OUTPUT, 'QUTDATA');
WHILE NOT ECLN(INPUT) DO
BEGIN
READ (INPUT, CH);
WRITE (OUTPUT, CH)
END;
END.

For more information on the standard textfiles INPUT and OUTPUT, as
well as Prime I/0 procedures, see Chapter 10.

THE POINTER TYPE

A pointer is a type of variable that references or points to a storage
location, contrary to a scalar or structured type variable, which
already has been allocated its own location in memory.

A scalar or structured type variable is accessible by its identifier.
All the necessary memory is allocated for the variable at compile time.
The memory taken up by the variable exists during the entire execution.
These variables are called static variables.

A variable accessed by a pointer, on the other hand, is created and
destroyed dynamically during the execution of the program.
Accordingly, this variable is called a dynamic variable.

Dynamic variables are not explicitly declared in variable declarations
and are not referenced by identifiers. Instead, they are referenced by
pointers. A pointer is the storage address of a newly created dynamic
variable, which is created by the predefined procedure NEW.

Pointer types are declared with this format:

TYPE type-identifier = “base-type;

6-31 Second Edition

19.1

DOCA303-191

The type-identifier is the name of a pointer (dynamic) data type whose
pointers will point to elements of the specified base-type. However,
there is a special pointer constant, termed NIL, which is always an
element of a pointer type and points to no element at all., Here is an
example of a pointer declaration:

TYPE

POINTER = "INTEGER;
VAR

P : POINTER;

P is a pointer that references or "points to" an elament of the INTEGER
type. P* is the actual integer being pointed to. The difference is
important.

There are four procedures, called dynamic allocation procedures, that
create and destroy dynamic variables:

NEW (P) Creates (or allocates) a new dynamic
variable, A pointer to this new variable
is assigned to the pointer variable P.

NEW(P, ¢l,...,Cn) Creates (or allocates) a new dynamic
variable of REQORD type with variants. A
pointer to this new variable is assigned
to the pointer variable P, The variants
of the variable (tag-field) correspond to
the case-constants cl,...,. The
case-constants must be listed
contiquously and in the order of their
declaration. They must not be changed
during execution.

DISFOSE (P) Indicates that the storage occupied by
the variable P" is no longer accessible.
That storage becomes available for future
use. P is then undefined. NEW(P) and
DISFOSE(P) are compleamentary.

DISROSE(P, ¢l,...,Cn) Indicates that the storage occupied by
P", which was allocated by the second
form of NBW, is no 1longer accessible,
That storage becomes available for future

use. P is then undefined. The
case-constants of both procedures must be
identical.

Note

As of Rev. 19.1, Prime supports approximately 16 segments
(1024K words) of dynamic storage.

Second Edition 6-32

DATA TYPES

Example 1:
PROGRAM POINTER SAMPLE(INPUT, CUTPUT);
VAR
PTR : "INTEGER; {PTR is a pointer variable bound to}
{type INTHGER.}
I : INTEGER;
BEGIN
FOR I :=1 TO 10 DO
BEGIN
NEN (PIR); {Allocates a variable of type INTEGER}
fand stores its address in PIR.}
PTR" := I; {PTIR” is the actual variable being}

{pointed to. A value of I is assigned}
{to this new variable.}
DISPOSE (PTR) {Destroys the variable PTR™ and returns}
{its storage for future use.}
END
END.

Example 2:

{This example creates a linked list (or a chain) to which elements
can be added or deleted at random. A linked list is essentially a
chain of RECORD elements, each of which has a POINTER field called
NEXT, which points to the next element in the chain.}

TYPE
LINK = “PERSON;
PERSON = RECORD

NEXT : LINK;
NAME : CHAR
END;
VAR
ROOT, P : LINK;
I : INTEGER;
CH : CHAR;
BEGIN
ROOT := NIL;
FOR I :=1 TO 50 DO
BHEGIN
READ (CH) ;
NEW(P) ;
P".NAME := (H; {A name code is stored in NAME.}
P".NEXT := ROOT; {The sequence of these two statements}
ROOT := P {is a general algorithm for inserting}
{an element at the beginning of the}
{list.}
END;
END.

6-33 Second Edition

Expressions

An expression is a single operand or a combination of operands and
operators that are evaluated to produce a value.

OPERANDS

An operand may be any of the following expressions:

A variable

An unsigned or signed number

A character string

A constant identifier

A function designator (explained in Chapter 9)
NIL

A set

7-1 Second Edition, Update 1

19.2

UPD4303-192

Here are some examples of valid operands:
15
(x+y+2)
SIN (x+Y)
[RED, C, GREEN]
[1, 5, 10..19, 23]
NOT P
I*J+1

-N

OPERATORS

Operators modify an operand or combine two operands. Operators can be
classified as arithmetic, relational, set, Boolean, integer, or
concatenation. (The concatenation operator and the integer operators
are Prime extensions.)

Arithmetic Operators

An arithmetic operator specifies computation to be performed on its
operands to produce a single numeric value, Table 7-1 lists the binary
and unary arithmetic operators and the data types of operands and
results.

Second Edition, Update 1 7-2

EXPRESSIONS

Table 7-1
Arithmetic Operators

Binary Operators Type of Operands Type of Result

+ (add) INTEGER/LONGINTEGER INTEGER/LONG INTEGER

- (subtract) REAL/TLONGREAL if both operands are

* (multiply) INTEGER/LONGINTEGER;

otherwise REAL/IONGREAL
/ (divide) INTEGER/LONG INTEGER REAL/IONGREAL,
REAL/TONGREAL

DIV (divide with INTEGER or INTEGER/LONG INTEGER
truncation) LONGINTEGER

MOD (modulus or INTEGER or INTEGER/LONG INTEGER
remainder) LONGINTEGER

Unary Operators

+ (identity) INTEGER/LONGINTEGER Same as operand
- (sign-inversion) REAL/LONGREAL

Relational Operators

The relational operators are used to compare values of data types —
scalar, STRING, ARRAY OF CHAR, pointer, or SET. In any given
comparison, both operands must be of the same type, except that INTEGER
can be compared with LONGINTEGER, and REAL with LONGREAL. The result
of the comparison is a BOOLEAN value, TRUE or FALSE. Table 7-2 lists
the legal relational operators and data types of operands.

7-3 Second Edition, Update 1

| 19.2

UPD4303-192

Table 7-2
Relational Operators
Operator Operation Type of Operands
19.2 | = equality SET, scalar, pointer, STRING, or
& inequality ARRAY OF CHAR
19.2 | < less than scalar, STRING, or ARRAY OF CHAR
> greater than
19.2 | <= less or equal scalar, STRING, or ARRAY OF CHAR
<= set inclusion SET
("is contained
inll)
19.2 | >= greater or equal scalar, STRING, or ARRAY OF CHAR

("contains")

>= set inclusion

IN set membership

SET

first (left) operand is any
scalar type (except REAL and
LONGREAL) , second (right)
operand is a set of that type

Here are some examples of relational operators.

First, let

X = ['A', lD" lcl, IBI]

y := ['A', 'E']
then
x=['A", 'B', 'C', 'D']
y <= X
y <X

'B' IN x

Second Edition, Update 1

{true }
{false}
{true }

{true }

r

SET Operators

EXPRESSIONS

SET operators, listed below, operate on sets to produce new sets,

Qperator Operation
+ set union
- set difference
* set intersection

The union of two sets is a set that contains all the members of both

sets., The difference

is a set that contains all the members of the

first set that are not also members of the second set. The
intersection is a set that contains all the values that belong to both

sets.

Here are some examples of SET operators.

First, let
x := ['A', 'E', '0']
y = ['T', 'U', '0']
z := ['A', 'B']

then
W::=Xx+Yy {w is ['A', 'E', 'I', 'O',
W:i=X-Y {w is ['A', 'E']}
Wi=x*z {wis ['A']}

Note

lul]}

Five relational operators, =, <>, <=, >=, and IN, also apply to

the SET data

type; they produce BOOLEAN

Relational Operators.

results, See

Second Edition

DOCA303-191

BOOLEAN Operators

Boolean opsrators operate on BOOLEAN values to produce a BOOLEAN
result, TRUE or FALSE. The operators are OR, AND, and NOT. In the
following examples, P and Q are of type BOOLEAN.

As these examples indicate, if P is true or Q is true, then the
expression P OR Q is true. If Pis true and Q is true, then the
expression P AND Q is true. (These expressions would be false
otherwise.)

NOT Q negates the value of Q. If Q is true, then NOT Q is false. If Q
is false, then NOT Q is true.

The OR Operator

by 9 PORQ
F F F

F T T

T F T

T T T

The AND Operator

P Q P AND Q
F F F

F T F

T F F

T T T

The NOT Operator

Q NoT Q
F T
T F

Second Edition 7-6

EXPRESSIONS

Integer Operators

The integer operators & and ! are Prime extensions. They perform
Boolean AND and OR operations on integers respectively. These
operators also work on longintegers. For example, if you wanted to
perform AND and OR operations on the two numbers 10 and 12, you could
say:

VAR
A,B,C,D : integer;
BEGIN
A :=10;
B := 12;
C := A & B; {AND operation}
D :=A ! B; {OR operation}
WRITELN(C) ;
WRITELN(D) ;
END.

At the machine level, the two binary numbers that stand for decimal 10
and 12 are 1010 and 1100 respectively. (The 12 leading zeros are
omitted.) During the AND and OR operations, the digit 1 means TRUE and
0 means FALSE. The first digit of 1010 is compared with the first
digit of 1100, and so on, to produce new binary (and hence decimal)
numbers C and D. The machine, therefore, calculates:

1010 AND 1100 = 1000 {decimal 8}
1010 OR 1100 = 1110 {decimal 14}
cC=238
D=14

Integer operators can be useful when you need a lot of Boolean TRUE and
FALSE values or "switches" that can be set to 1 (TRUE) or 0 (FALSE) in
the internal binary representation of any decimal number.

STRING Concatenation Operator

Prime Pascal's concatenation operator (+) concatenates two strings into
one. The concatenation operator is a Prime extension. There is no
concatenation operator in standard Pascal.

The concatenation operator works only on operands of the STRING data
type. The STRING type is also a Prime extension. (See Chapter 6.)

The resultant length of the newly formed string equals the sum of the
operational lengths of the two concatenated strings. Either or both of
the strings may be a character 1literal string, enclosed in single
quotes.

7-7 Second Edition, Update 1

19.2

EXPRESSIONS

Here is an example that uses concatenation operators:

VAR
ST2 : STRING[2];
ST4 : STRING[4];
ST6 : STRING[6];
ST12 : STRING[12];

19.2
BEGIN
ST2 := 'PA';
ST4 := 'SCAL';

ST6 := ST2 + ST4; {value of ST6 is 'PASCAL'}

ST12 := ST2 + ST4 + 'STRING' {value of ST12 is ' PASCALSTRING' }
END.

7-7A Second Edition, Update 1

UPD4303-192

OPERATOR PRECEDENCE

The precedence among operators determines the order in which
expressions are evaluated. The precedence of operators is as follows:

1. Operations in parentheses Highest precedence
(done first)

2. NOT, unary - and +

3. * /, DIV, MOD, AND, &

4. +’ ~r OR’ !

5. =, Oy &y Oy <5 >, IN Lowest precedence
(dorne last)

Order of Evaluation

When there are several operations at the same level of precedence, the
operations are performed from left to right.

Parentheses may be used to override the normal evaluation order. An
expression enclosed in parentheses is treated as a single operand, and
is evaluated first. When expressions are contained within a nest of
parentheses, evaluation proceeds from the innermost set to the
outermost set (inside out).

For example:

7+A*2-5DIV3+A {Numbers below the operators
indicate the order in which
2 1 4 3 5 the operations are performed. }

((7+A)*2-5)DIV3 +A

1 2 3 4 5

Second Edition, Update 1 7-8

Statements

This chapter discusses the various types of executable statements in
Prime Pascal. These statements, which specify algorithmic actions,
comprise the executable part of a program.

SUMMARY OF STATEMENTS
The various types of Pascal statements are:
® Assigmment Statement
® Procedure Statement
e Campound Statement
e Empty Statement
e Control Statements:
REPEAT
WHILE
FOR
IF
CASE
GOTO

® WITH Statement

8-1 Second Edition

DOCA303-191

ASSIGNMENT STATEMENT

An assignment statement assigns a value to a variable or a function
identifier. The form of the statement is:

variable | function-identifier := expression;

The assignment operator := can be read "becomes" or "gets the value
of". The expression on the richt-hand side of the operator is
evaluated and the value obtained becomes the current value of the
variable or the function-identifier on the left-hand side of the
operator.

A function—identifier is a function name. Within the function block of
the function, it may appear on the left-hand side of the assignment
operator. (See Chapter 9.)

A variable is represented by its name. Variables on the left-hand side
of the assignment operator may or may not have been assigned values
previously.

For example, if the user has made the following declarations in a
program:

VAR
H : CHER;
R : REAL;

NUMBER, F, I, J, K : INTEGER;
then the following assignment statements are valid:
CH :='5";
NUMBER := ORD(CH) - ORD('0');
R := 123.3;
F := TRUNC(R) MOD 5;

I:=F;

I := SQR(K) - (IXJ);

Assigmment Campatibility
The data type of the expression on the right-hand side of the

assignment operator must be compatible with the data type of the
variable or function identifier on the left-hand side.

Second Edition 8-2

STATEMENTS

The following are some guidelines for using assignment statements:

e The variable or function identifier and the expression must be
of compatible types.

e Neither the variable/function identifier nor the expression
should be a FILE type or a structured type with a FILE element.

e The variable or function identifier can be of type REAL and the
expression can be of type INTEGER; however the converse is not
possible. (You can assign an integer to a real, but not a real
to an integer unless the TRUNC function is used.)

e The variable or function identifier can be of type LONGINTEGER
and the expression can be of type INTEGER, but the converse may
cause your program to fail. (You may assign an integer to a
longinteger, but a longinteger will be truncated when assigned
to an integer.) This rule also applies to REAL and LONGREAL for
the same reason.

® Any element, group of elements, or expression that is of a
particular SET type must be assigned to a variable or function
identifier of the same SET type.

e The variable or function identifier and expression can be type
ARRAY OF CHAR as 1long as both arrays have the same number of
elements.

e The variable or function identifier and expression can be
subranges of each other,

PROCEDURE STATEMENT

A procedure statement activates the execution of a procedure. A
procedure is a subprogram, which is declared in the main program.

The format of the procedure statement is:
procedure-identifier [(parameter-list)];

The procedure-identifier is the name of the procedure. When the
procedure statement is encountered in the main program, the procedure
is executed., The parameter-list is optional. If you want to pass
values to and from the main program and the procedure, you would use
parameters. The parameter-list is enclosed in parentheses, and the
parameters are separated by commas.

8-3 Second Edition, Update 1

UPD4303-192

Here are some examples of procedure statements:
PRINTHEADING ;
TRANSPOSE (A, N, M) ;
BISECT (FCT, -1.0, +1.0, X);

For more information on procedures and functions, including external
procedures and functions, see Chapter 9.

COMPOUND STATEMENT

A compound statement is a sequence of statements separated by
semicolons. The general form of a compound statement is:

BEGIN
statement-1 ; statement-2;...[statement-n]
END;

The keywords BEGIN and END must designate the start and the end of the
sequence of a compound statement. They are not statements themselves.
BEGIN and END should not be used on a single statement. statement-1,
statement-2, etc. can be any Pascal statements. A compound statement
can appear anywhere a single statement is allowed.

Example 1:
BEGIN
2 :=X;
X :=Y;
Y := 12
END;
Example 2:
IF FLAG = 1 THEN
BEGIN
QOUNTER := 0;

READ (CHARACTER) ;
WHILE (CHARACTER <> BLANK) DO
BEGIN
COUNTER := QOUNTER + 1;
READ (CHARACTER)
END;
WRITELN (' THE NUMBER OF CHARACTERS = ', QOUNTER)
END
ELSE
FLAG := 0;

Second Edition, Update 1 8-4

STATEMENTS

It is not necessary to place a semicolon after the statement that
precedes the END delimiter. END is part of the compound statement, not
a statement in itself, The use of a semicolon will generate an empty
statement.

EMPTY STATEMENT

An empty statement denotes no action and, as its name implies, consists
of no letters, digits, or punctuation symbols. Using hypothetical
statements sl, s2, and s3, two examples follow.

Example 1:

CASE DAYS OF
SUN: ; {An empty statement is right here.}
MON, WED, FRI: ¢£l;
TUE, THUR: s2;

SAT: s3
END;
Example 2:
BEGIN
READ(CH) ;
WRITE(CH); {The semicolon separates the WRITE procedure fram}
END; {the END so an empty statement precedes the END.}

OONTROL, STATEMENTS

Statements are normally executed in the order of their appearance in a
program unit., However, it is often necessary to interrupt the normal
processing of statements for a special purpose, such as the repeated
processing of a sequence of statements or the execution of one group of
statements as opposed to another. Control statements are used to alter
the normal sequential execution of statements.

There are three types of ocontrol statements: repetitive statements,
conditional statements, and unconditional statements.

Note
Control statements that are enclosed within other control
statements are called "nested statements" and "nested loops".

In the discussions that follow, some examples of nested control
statements are given.

8-5 Second Edition

DOC4303-191

Repetitive Statements
A repetitive statement specifies that a certain group of statements is

to be executed repeatedly. This repetition is called a loop. There
are three types of repetitive statements — REPEAT, WHILE, and FOR.

REPEAT Statement: The form of the REPEAT statement is:

REPEAT statement-1 [; statement-2...] UNTIL boolean-expression;

The statement (or the sequence of statements) between the keywords
REPEAT and UNTIL is executed repeatedly until the boolean—-expression
becomes true. The statement (or statement sequence) will be executed
at least once, because the Boolean—expression is evaluated at the end
of the cycle.

Example 1:

SPACE := ' ';
REPEAT
READ (CH) ;
WRTTELN (CH)
UNTIL CH = SPACE;

Example 2:
REPEAT
K :=1IMPDJ;
I :=J;
J :=K
UNTIL J = 0;

It is not necessary to place a semicolon after the statement that
immediately precedes UNTIL, because UNTIL is part of the statement, not
a statement itself.

Dote

In a REPEAT loop, the beginning and the end of the statements
to be executed repeatedly are marked by the keywords REPEAT and
UNTIL. Therefore, it is not necessary to use the keywords
BEGIN and END to bracket the statement sequence. However, if
BEGIN and END are used, it is not wrong, just redundant.

Second Edition 8-6

STATEMENTS

WHILE Statement: The form of the WHILE statement is:
WHILE boolean—expression DO statement;

The statement, which may be any statement (including a compound
statement), is executed repeatedly while the boolean—expression is
true. The boolean-expression is evaluated at the beginning of each
cycle. If its value is false initially, the statement will not be
executed at all,

Example 1:

WHILE A[I] < X DO
I :=1I+1;

Example 2:

WHILE I>0 DO
BEGIN
IF ODD(I) THEN
Z =272 *X;
I :=1DIV 2;
X := QR(X)
END;

Example 3:

WHILE NOT EOF(INPUT) DO
BEGIN
WHILE NOT EOLN(INPUT) DO
BEGIN
READ (INPUT, CH):
WRITE (OUTPUT, CH)
END; {inner WHILE loop}
READLN(INPUT)
END; {outer WHILE loop}

Example 3 illustrates a loop within a loop or a nested loop.

8-7 Second Edition

DOCA303-191

A loop controlled by WHILE may be converted into a loop controlled by
REPEAT. For example, the WHILE statement:

WHILE b DO body;
is equivalent to:

IF b THEN

REPEAT

body
UNTIL NOT(b)

FOR Statement: A FOR statement causes a statement to be executed a
specified number of times while a progression of values is assigned to
a variable called the control variable of the FOR statement.

The general form of a FOR statement is:

FOR control-variable := initial-value TO final-value
DO statement;

The alternative form (for decreasing initial value) is:

FOR control-variable := initial-value DOWNTO final-value
DO statement;

The control-variable is increased to or decreased down to the next
value in the loop. It counts, and therefore controls, the number of
times the statements are executed.

The statement constitutes the body of the FOR loop. It may be any
statement, including a compound statement.

The control-variable is of any scalar type (except REALL or LONGREAL).
The initial-value and the final-value must be of a type compatible with
the control-variable's type. Upon completion of the FOR statement, the
control-variable is undefined.

When the FOR-TO form is used, the ocontrol-variable is tested to
determine whether it is less than or equal to the fimal-value. If it
is, the statement is executed, the control-variable is incremented by
1, and the cycle is repeated. If the elements of an enumerated type
are being incremented, then the control-variable gets the value of the
control-variable's successor.

In the FOR-DOWNTIO form, the control-variable is tested to determine
whether it is greater than or egual to the fimal value. If it is, the
statement is executed, the control-variable is decremented by 1, and
the cycle is repeated.

Second Edition 8-8

STATEMENTS
Here are some examples of FOR loops:

Example 1:

FOR I :=1 TO 20 DO
BEGIN
READ(A[I]);
WRITE(A[I])

’

Example 3:

FOR C := RED TO BLUE DO
WRITELN(ORD(C)) ;

Example 4:

FOR J := K DOWNTO 1 DO
SUM := SUM + J;

Example 5:

FOR linenumber := 1 TO 20 DO
BHGIN
WRITE (linenumber) ;
FOR I :=1 T0 60 DO
BHGIN
READ (CH) ;
WRITE (CH)
END; {inner FOR loop}
READLN;
WRITELN
END; {outer FOR loop}

Example 5 above contains a nested FOR loop.

8-9 Second Edition

DOCA303-191

Conditional Statements

A conditional statement selects one of a number of alternate courses of
action based upon the evaluation of a certain condition. There are two
types of conditional statements — IF and CASE.

IF Statement: The form of an IF statement can be either:

IF boolean-expression THEN statement-1;
or
IF boolean—-expression THEN statement-1 ELSE statement-2;

where statement-1 and statement—-2 may be any statement, including a
compound statement.

When the IF-THEN form is used, statement-]1 is executed only if the
boolean—-expression is true. Otherwise, statement-1 is bypassed and the
next sequential statement is executed.

The IF-THEN-ELSE form allows the selection of one of two statements
depending upon the value of the boolean-expression, If the
boolean-expression is true, statement-1 is executed and statement-2 is
bypassed. If the boolean-expression is false, statement-1 is bypassed
and statement-2 is executed.

After the execution of the IF statement, control is passed to the next
sequential statement.

Examples:
IF A > B THEN
WRITELN(' A IS GREATER THAN B.');

IF X < 1.5 THEN

BEGIN
Z =X +Y;
WRITELN(Z)
END
ELSE
7 :=1.5

Never put a semicolon immediately before ELSE because ELSE is not a
statement. It is part of the IF statement.

An IF statement is nested within another IF statement whenever it
appears as statement-l or statement—2 or as part of statement-1 or
statement-2. In these cases, any ELSE encountered must be paired with
the immediately preceding IF, which has not been already paired with an

Second Edition 8-10

'

STATEMENTS

ELSE. The number of ELSEs in a nested IF structure need not be the
same as the number of IFs. Here are two examples of nested IF
statements:

Example 1:

IF X > 0 THEN
IF Y > 0 THEN
Y=Y+ 1
ELSE
X :=X+1;

Example 2:

IF A < C THEN

CASE Statement: A CASE statement can be a much more efficient way to
do multiple IF statements. A CASE statement is used to select one of a
group of statements for execution depending on the value of an
expression. The general form of a CASE statement is:

CASE expression OF
case—constant-list-1 : statement-1;

case—-constant-list-n : statement-n
[; OTHERWISE statement]
END;

If the value of the expression matches any of the case-constants, then
the statement or group of statements that corresponds to that
case-constant is executed.

8-11 Second Edition

DOCA303-191

The expression can be of any scalar type, except REAL and LONGREAL.
Multiple constants in a list are separated by commas. The
case-constants can be written in any order.

Any statement, including a compound statement, may be controlled by a
CASE statement.

Example 1:

VAR
OPERATOR : (PLUS,MINUS, TIMES) ;
X, Y : INTHGER;

BEGIN
CASE OPERATOR OF
PLUS ¢+ X :=X +Y;
MINUS: X :=X - Y;
TIMES: X :=X *Y
END
END.
Example 2:
TYPE
DAYS = (SUN,MON, TUE, WED, THUR, FRI, SAT) ;
VAR
TODAY, TOMORROW, YESTERDAY : DAYS;
BEGIN
FOR TODAY := SUN TO SAT DO
BEGIN

CASE TODAY OF

SUN : BEGIN YESTERDAY := SAT ; TOMORROW := MON END;
SAT : BEGIN YESTERDAY := FRI ; TOMORROW := SUN END;
MON, TUE, WED, THUR, FRI :

BEGIN

YESTERDAY := PRED(TODAY);
TOMORROW := SUCC(TODAY)
END
END; {CASE statement}
WRITELN ('TODAY', ORD(TODAY), ' TOMORROW' , ORD(TOMORROW) ,
' YESTERDAY', ORD(YESTERDAY))
END {FOR statement}
END.

Second Edition 8-12

[

STATEMENTS

Example 3:

TYPE
WEEKDAYS = (SUN, MON, TUE, WED, THUR,
FRI, SAT);
VAR
DAYS : WEEKDAYS;
BEGIN
CASE DAYS OF
SUN, SAT : ; {Since there is no action required for
SUN and SAT, the space before the
semicolon is an empty statement
producing no action.}
MON, WED, FRI : statement-l;
TUE, THUR : statement-2
END
END.,

When the CASE statement is executed, the expression must match one of
the constant values; otherwise, the effect of the CASE statement is

undefined.

However, you can use the OTHERWNISE clause to execute an alternative
statement, or group of statements, if no other statement in the
case-constant list has been selected.

The OTHERWISE clause option is a Prime extension., OTHERWISE is a Prime
keyword. This clause, if present, must immediately precede the keyword
END, which terminates the CASE statement. For example:

VAR
I:1..20;
BEGIN
CASE I OF
1,20 : statement-1;
4 : statement-2;
5,7,9 : statement-3;
3,11,17 : statement-4;
OTHERWISE statement-5
END
END.

8-13 Second Edition

DOCA303-191

In standard Pascal, the function of the OMHERWISE clause can be
achieved by combining the standard CASE statement and an IF statement.
The previous example of the OMERWISE clause may be rewritten in
standard Pascal as:

VAR
I:1..20;
IFI IN [1,3,4,5,7,9,11,17,20] THEN
CASE I OF
1,20 : statement-1;
4 : statement-2;
5,7,9 : statement-3;
3,11,17 : statement-4
END
ELSE
statement-5;

Note

The CASE statement is different from the CASE clause in the
variant part of a record. The CASE clause is discussed in
Chapter 6.

Unconditional Statement

GOID Statement: A GOTO statement is an unconditional statement that
transfers control to the statement designated by the label, without
testing or satisfying any condition. The form of the GOTO statement
is:

GO0 label;

The label is an unsigned integer, which can be up to four digits long.
You must declare the 1label prior to its appearance in the GOTO
statement. The designated statement must be prefixed with the integer
followed by a colon,

There are some restrictions on the use of a GOIO statement., A GOIO
statement can transfer control within a block, or from an inner block
to an outer block; it cannot transfer control from an outer block to
an inner block. In particular, a GOTO statement may transfer control
out of a subprogram (procedure or function), but not into one.

Second Edition 8-14

STATEMENTS

Example 1:

LABEL 10; {DATA} ...
PROCEDURE P1;

LABEL 20, 30; ...

BHGIN ...

20: IF sl THEN GOTO 30;

"GOO 20;
30: s5;

IF s7 THEN GOTO 10
IND; {P1}
BEGIN {DATA} ...
10: s9; {A "GOTO 20" or "GOTO 30" is not}
{permitted in DATA.}

Example 2:
{This is an invalid example.}

PROGRAM Main;
PROCEDURE P;

BEGIN

5 : 8l

END; {Of procedure P}
BEGIN {main}

GOIO 5; ({Transferring control to an inner block}

. {is not permitted.}

END. {Of program Main}

Note

In general, GOTO statements make a program algorithm hard to
understand, and their use is discouraged. Therefore, a GOTO
statement should be used only when it cannot be easily replaced
by other available Pascal statements.

8-15 Second Edition

DOC4303-191

WITH STATEMENT «
A particular field of a record is normally accessed by using both the
name of the record and the name of the field, separated by a period.
(See Chapter 6.)
However, if a field is accessed many times, the WITH statement can
simplify this access by indicating the record variable name only once.
The form of a WITH statement is:

WITH record-variable-1 [,record-variable-2...]

DO statement;

This form is equivalent to:

WITH record-variable-l DO “N

[WITH record-variable-2 DO]...statement

The statement may be any statement, including a compound statement.
Within the statement, fields may be referred to only by £field
identifiers. For example:

WITH DATE DO
IF MONTH = 12 THEN
BEGIN
MONTH := 1; “N
YEAR := YEAR + 1 -
END

ELSE MONTH := MONTH + 1;
This is equivalent to:

IF DATE.MONTH = 12 THEN

BEGIN
DATE.MONTH := 1; “xa
DATE.YEAR := DATE.YEAR + 1

END

ELSE DATE,MONTH := DATE.MONTH + 1;

Second Edition 8-16

Procedures and
Functions

In addition to the main program, a Pascal program may contain a number
of procedures and functions that can be collectively <called
subprograms. In Prime Pascal, a subprogram has the following features:

A subprogram can be at most 64K words (128 bytes) in size.

Values, called rameters, can be passed to and used by
subprograms.

Subprograms themselves can be passed as parameters to other
subprograms.

A subprogram can be separated from the main program (external
subprogram) or embedded within the main program.

Before it is fully defined, a subprogram can be referenced by
other subprograms within the same Pascal program. However, the
referenced subprogram must have been declared using the FORNARD
attribute,

An externmal, separately compiled subprogram can be written in
any Prime supported language. If the subprogram is declared in
a Pascal program using the EXTERN attribute, the subprogram can
be referenced from any point within the Pascal program. (See
Appendix D for more information on interfacing Pascal with other
languages.)

A subprogram can call itself. This process is called recursion.

9-1 Second Edition

|l9.1

DOC4303-191

This chapter discusses how to declare, invoke, and manipulate
subprograms, and presents the following topics:

e DParameters

® Procedures

e Functions

e Forward procedures and functions
e External procedures and functions

® Recursive procedures and functions

PARAMETERS

Parameters allow information to be passed between the calling programs
and the called programs. There are two kinds of parameters — actual
and formal.

Actual Parameters

An actual parameter, appearing in a subprogram call (procedure
statement or function designator), is a variable whose location or
value is passed to the formal parameter in the ocorresponding position
in the called procedure or function heading. The actual parameters
must agree in order, number, and data type, but not necessarily in
name, with the formal parameters. For example, the following procedure
statement has three actual parameters (X, Y, and I) that are passed to
the procedure PLOT:

PLOT(X, Y, I);

Formal Parameters

Formal parameters are "placeholders" for the actual parameters. They
mark the places where the values of the actual parameters are to be
passed, Formal parameters are declared in the formal parameter list of
a procedure or function heading. ‘This 1list specifies the order,
number, and data type of the corresponding actual parameters.

For example, the £following procedure heading has three formal
parameters (A, B, and J) that mark the "spots" or "places" where the
values of the actual parameters are to be passed:

PROCEDURE PLOT (A, B : REAL; J : INTEGER);

Second Edition 9-2

()

PROCEDURES AND FUNCTIONS

In standard Pascal, there are four kinds of formal parameters —— value,
variable, procedure, and function. (Procedures and functions can be
passed as parameters, Passing procedures and functions is discussed
later in this section.)

Value Parameters: If a formal parameter is not preceded by the keyword
VAR, then it is a value parameter,

A value parameter is a variable that receives the value of its
corresponding actual parameter from the procedure statement. When the
subprogram is called, the value is passed to this variable so that the
procedure can use this value to perform its operations. However, the
value is never passed back to the main program. A value parameter is
also known as a pass-by-value parameter.

When the subprogram is called, the current value of the actual
parameter is passed to the variable. Although the subprogram can
change the value in its operations, the subprogram does not change the
value of the actual parameter in the calling program. Therefore, when
the values of actual parameters need to be protected, value parameters
are used. For example:

PROGRAM Parameters (OQUTPUT);
VAR
A, B : INTEGER;
PROCEDURE VALUE PAR(I, J : INTEGER);

BEGIN
I :=I+1; {I=2}
J:==J+2; {J=3}
WRITELN(I, J)

END; {Procedure VALUE PAR}
BEGIN {main program}

A :=1; B :=1;

VALUE _PAR(A,B);

WRITELN(A, B) {A=1, B=1}
END.

In the above example, each of the variables A and B has an integer
value of 1. These values are passed to the variables I and J
respectively. The values of I and J change to 2 and 3 when the
procedure is executed, but the values of A and B remain at 1.

The data type of the value parameter must be compatible with the data
type of the corresponding actual parameter.

Variable Parameters: If a formal parameter is preceded by the keyword
VAR, then it is a variable parameter.

9-3 Second Edition

DOCA303-191

A variable parameter is also a variable that receives the value of

its

corresponding actual parameter. Unlike the value parameter, however,
the variable parameter also causes changes to the actual parameter.
That is, the value of the variable parameter and its address are passed
back to the calling program. (Values of value parameters can pass only

from the calling program to the subprogram.)

Variable parameters are also known as pass-by-reference parameters

because only variables can be passed to the subprogram.
Here is an example of using variable parameters:

PROGRAM Parameters (OUTPUT);
VAR
A, B : INTEGER;
PROCEDURE VAR _PAR(VAR I : INTHGER; J : INTHGER);
{I is a variable parameter}
{J is a value parameter.}

+6; {1=17}
+3 {J=4}

END; {Procedure Var_Par}
BEHGIN {main program}

A :=1;

B :=1;

VAR_PAR(A, B);

WRITELN(A, B) {A=7; B =1}
END.

(S|

Caution

generated. The following example is invalid:

PROGRAM Main; ...

PROCEDURE VAR_PAR(VAR X : INTHGER);
BEGIN ... END;

BEGIN

END.

Do not pass a constant, another expression, or a function call
to a variable parameter, or a compile time error will be

VAR_PAR(10) ; {This will generate a compile-time error}

Constants and expressions can be passed to value parameters,

Second Edition 9-4

however.

PROCEDURES AND FUNCTIONS

ARRAY or RECORD Type Variable Parameters: The Prime Pascal compiler

produces two types of object code. Ordimary code can address only
within a segment. Boundary-spanning code can address across the
boundary between one segment and the next.

Whenever an array or record extends across a segment boundary, all
references to it must consist of boundary-spanning code. All
references in the program to any array or record the compiler knows to
be longer than a segment will automatically be compiled with
boundary-spanning code. No special action is required of the user in
this case.

However, when an ARRAY or REQORD type variable parameter appears in a
subprogram, the compiler has no way of knowing the storage status of
any corresponding ARRAY or REMORD type actual parameter when the
subprogram is invoked. Therefore, the compiler cannot know whether to
compile references to that variable parameter with ordinary or
boundary-spanning code. You must inform the compiler of the correct
action in this case, through use of the -BIG/-NOBIG compiler options.

When a subprogram is compiled without -BIG (-NOBIG 1is the default),
ARRAY or RE(MORD type variable parameter references will generate
ordinary code; the corresponding ARRAY or REQORD type actual parameter
must then be contained within one segment.

When a subprogram is compiled with -BIG, all references it makes to any
ARRAY or REQORD type variable parameter will generate boundary-spanning
code; the corresponding ARRAY or REQORD type actual parameter may then
span a segment boundary, though it need not do so.

Boundary-spanning code executes more slowly than ordinary code because
it performs more complex address calculations. The -BIG option should
therefore not be used unnecessarily.

Caution

Arrays or records associated with value parameters must not
span segment boundaries. The following example is invalid:

TYPE
LONGARRAY = ARRAY[-32767..32767] OF REAL;

PROCEDURE X(A: LONGARRAY);

9-5 Second Edition

19.1

DOC4303-191

Procedures and Functions as Parameters

In Pascal, you can declare and pass a procedure or function as a
parameter. Any procedure or function can pass any other procedure or
function as a parameter,

Declaring Procedures and Functions as Parameters: A procedure or
function declaration must list another procedure or function as a
formal parameter. For example:

PROCEDURE A (PROCEDURE X) ;

If the procedure or function that is being passed has parameters of its
own, the number and types of parameters must also be listed. For
example: ‘

PROCEDURE A (PROCEDURE X(X1, X2 : INTEGER));

If you are passing a function, the type that the function returns must
also be given:

PROCEDURE A (FUNCTION Y(Y1l, Y2 : INTHGER) : INTHGER);

A procedure or function parameter can even have other procedures and/or
functions as parameters:

PROCEDURE A (FUNCTION Y(PROCEDURE Y1;
FUNCTION Y2 : CHAR) : INTHGER);

The procedure or function that is declared must match —— parameter for
parameter, in number and type — the declaration for the procedure or
function that is passed.

Passing Procedures and Functions as Parameters: The name of a
procedure or function is passed the same way any variable is passed.
For example:

ADD (SORT) ;
The procedure named SORT is passed to a procedure named ADD., The name
SORT is passed without parameters, but the number and type of

parameters declared in the SORT procedure must match those in the ADD
declaration, parameter for parameter.

Second Edition 9-6

PROCEDURES AND FUNCTIONS

Here are some examples:

Example 1:

VAR
I : INTEGER;
PROCEDURE ADD1;
BEGIN {procedure ADD1}
I:=1+1;
END;
PROCEDURE (CALLPROC (PROCEDURE X);
BEGIN {procedure CALLPROC}
X;
END;
BEGIN {main program}
I :=0;
CALLPROC (ADD1) 19.1
END. {I = 1} y

Example 2:

VAR
I : INTHGER;
FUNCTION ADD1O : INTBEGER;
BEGIN {function ADD10}
ADDI1O := 10
END;
FUNCTION CALLF (FUNCTION X : INTEGER) : INTEGER;
BEGIN {function CALLF}
CALLF := X + X
END;
BHGIN {main program}
I := CALLF(ADD10)
END. {I = 20}

9-7 Second Edition

19.1

DOC4303-191

Example 3:

VAR
I, J : INTEGER;
FUNCTION SQUARE(X : INTBEGER) : INTHGER;
BEGIN {function SQUARE}
SQUARE := X * X
END;

FUNCTION FCALLFUNC(FUNCTION Z (R : INTEGER)
BEGIN {function FCALLFUNC}
FCALLFUNC := Z(5)
END;

PROCEDURE PCALILFUNC(FUNCTION Y(Q : INTHGER)
BEGIN {procedure PCALLFUNC}
I :=Y(5)
END;
BEGIN {main program}
J := FCALLFUNC(SQUARE) ;
PCALLFUNC (SQUARE)
END. {I =25 and J = 25}

Example 4:

VAR

I, J, K : LONGINTEGER;
PROCEDURE ADD (X

FCALLPROC := 10
END;

BEGIN {procedure PCALLPROC}
Y(8);

J =10
END;
BEGIN {main program}
I :=0;
K := FCALLPROC(ADD) ;

no

PCALLPROC (ADD)
END. {I, J, and K each = 10}

Second Edition 9-8

: LONGINTEGER) ;
BHGIN {procedure ADD}
I :=I+X
END;
FUNCTION FCALLPROC(PROCEDURE Z (R : LONGINTEGER))
VAR
R : REAL;
BEGIN {function FCALLPROC}
R := 2.19;

: INTHGER) : INTHGER;

: INTHGER) ;

: LONGINTHEGER;

7 (ROUND(R)); {result of function call is passed}

PROCEDURE PCALLPROC (PROCEDURE Y(Q : LONGINTEGER));

PROCEDURES AND FUNCTIONS

Example 5:

VAR
I, J : INTEGER;
PROCEDURE ADD2 (PROCEDURE Al);
BEGIN {procedure ADD2}
Al;
Al
END;
PROCEDURE ADD1;
BEGIN {procedure ADD1}
I :=1I+1
END;
PROCEDURE CALLPROC (PROCEDURE X(PROCEDURE Y); PROCEDURE Z);
BEGIN {procedure CALLPROC}

BEGIN {main program}
I :=0;
CALLPROC (ADD2, ADD1)
END. {I = 3}

Note

A procedure or function cannot be a variable parameter. For
example:

PROCEDURE X (VAR PROCEDURE Y); ({this is illegal}

Any attempt to use a procedure or function as a variable
parameter will cause the VAR to be ignored and a severity 2
error to be given.,

PROCEDURES

A procedure is a user-written independent program unit that performs a
set of operations. A procedure must be declared in a procedure
declaration, a forward procedure declaration, or an external procedure
declaration before the procedure can be called by a procedure
statement.

Procedure declarations are discussed below. Forward and external
procedure declarations are discussed later in this chapter.

The extermal procedure declaration is a Prime extension to standard
Pascal.

9-9 Second Edition, Update 1

19.2

PROCEDURES AND FUNCTIONS

Procedure Declarations

A procedure declaration defines and names a procedure. The form of a
procedure declaration is:

PROCEDURE identifier [(formal-parameter-list)]; block;

The keyword PROCEDURE begins a procedure declaration. The identifier
is the name of the procedure. The list of formal parameters, if any,
enclosed in parentheses, specifies the name of each formal parameter
followed by its type-identifier. If you choose to use them, parameters
can be passed by value or by reference to the subprogram. Parameters
are discussed earlier in this chapter.

9-9A Second Edition, Update 1

UPD4303-192

Procedure Declarations

A procedure declaration defines and names a procedure. The form of a
procedure declaration is:

PROCEDURE identifier [(formal-parameter—list)]; block;

The keyword PROCEDURE begins a procedure declaration. The identifier
is the name of the procedure. The list of formal parameters, if any,
enclosed in parentheses, specifies the name of each formal parameter
followed by its type-identifier. If you choose to use them, parameters
can be passed by value or by reference to the subprogram. Parameters
are discussed earlier in this chapter.

Except in forward or extermal declarations, the procedure heading
described above is immediately followed by the procedure block.

A procedure block has the same general form as a program block. It may
contain declarations for 1labels, constants, types, variables,
procedures, and functions and a sequence of executable statements
surrounded by a BEGIN and END pair. However, the procedure block ends
with a semicolon instead of a period.

Unlike a function, the name of a procedure must not be assigned a
value. Therefore, do not specify a data type for a procedure itself.

Note

Identifiers and labels declared in the main program are global.
That is, they can be referenced throughout the entire program,
including these procedures (or functions), so long as the
procedures are contained within the main program (are not
external) . However, those identifiers and labels applying only
to a particular procedure (or function) but not to the program
as a whole should be declared within that procedure (or
function). These identifiers and labels are local.

Invoking Procedures

A procedure statement invokes, or calls, a procedure. A procedure
statement has the form:

procedure-identifier [(actual-parameter-1 [,actual-parameter-2]...)]

The procedure—identifier is the name of the called procedure. When the
called procedure has one or more formal parameters defined in its
heading, the procedure statement must contain the corresponding actual
parameters along with the procedure-identifier.

Second Edition, Update 1 9-10

PASCAL REFERENCE GUIDE

Conformant Array Parameters

Conformant array parameters have been added to ISO Standard Pascal in
order to overcome a major difficulty created by Pascal’s strict typing.

Note

Conformant arrays are part of the ISO Pascal standard, but not
part of the ANSI standard. If your programs must conform to
the ANSI standard, do not use conformant array parameters.

Without conformant arrays, it is impossible to use the same procedure
or function to handle arrays that have the same type and shape, but
different bounds.

For instance, you might wish to write a procedure that sorts a
one-dimensional array of integers -- an array that might consist of 10,
25, or 50 integers. In earlier versions of Pascal (and in ANSI
Standard Pascal), there are two possible solutions. You can declare a
single 50-integer array type, pad the smaller arrays to fit it, and
thus have a single procedure to handle the sorting; or you can declare
three different array types, but then have three sort procedures that
are identical except for their array bounds.

Both of these solutions are cumbersome and involve wasted storage
space. Conformant array parameters, however, make it possible both to
declare the three different array types and to use a single procedure
to sort the arrays.

A conformant array parameter definition occurs in the formal parameter

specification of a procedure or function. Its general form is as
follows:

arrpar : ARRAY [lowbound..highbound : ordtype] OF anytype

The parameter arrpar can be either a value parameter or a variable
parameter. If arrpar is passed by value, the component type, anytype,

cannot be a file or a type containing a file. The identifiers lowbound

and highbound must be of an ordinal type, specified by ordtype.

Fourth Edition 9-10

The following program example uses
PROCEDURE BUBBLE_SORT sorts arrays
simple sorting algorithm.

PROGRAM Sortarrays (INPUT, OUTPUT,
TYPE

RANGE = -100..100;

SMALLARRTYPE = ARRAY [1..10] OF

BIGARRTYPE = ARRAY [-10..20] OF
VAR

INARR, OUTARR : TEXT:

SMALLARR : SMALLARRTYPE;

BIGARR BIGARRTYPE;

I : RANGE;

PROCEDURE BUBBLE_SORT

(VAR ARR : ARRAY [LOW..HIGH

PROCEDURES AND FUNCTIONS

conformant array parameters.
of different sizes by means of a

INARR, OUTARR) ;

INTEGER;
INTEGER;

RANGE] OF INTEGER) ;

VAR
I, J : RANGE;
HOLD INTEGER;
BEGIN
FOR I := LOW TO (HIGH - 1) DO
FOR J := LOW TO (HIGH - 1) DO
IF ARR[J] > ARR([J + 1] THEN
BEGIN
HOLD := ARR([J];
ARR[J] := ARR[J + 1]:
ARR[J + 1] := HOLD
END;
END; {(BUBBLE_SORT}
BEGIN
FOR I := 1 TO 10 DO
BEGIN

WRITE ('Enter an integer:
READLN (SMALLARRI[I]) ;

END;
BUBBLE_SORT (SMALLARR) ;
FOR I := 1 TO 10 DO

WRITELN (SMALLARRI[I]) ;
RESET (INARR) ;
FOR I := -10 TO 20 DO
READLN (INARR, BIGARR([I]);
BUBBLE_SORT (BIGARR) ;
REWRITE (OUTARR) ;

FOR.I := -10 TO 20 DO
WRITELN (OUTARR, BIGARR[I])
END. {Sortarrays}

9-11

)

{first call to BUBBLE_SORT}

{second call to BUBBLE_SORT}

Fourth Edition

PASCAL REFERENCE GUIDE

When procedure BUBBLE_SORT is invoked, the identifier LOW takes on the
value of the lower bound of the actual parameter, and HIGH takes on the
value of the upper bound of the actual parameter. When SMALLARR is
sorted, LOW is 1 and HIGH is 10; when BIGARR is sorted, LOW is -10 and
HIGH is 20.

The actual parameter must be compatible with the conformant array
definition in the formal parameter. The actual parameter is compatible
if all of the following conditions hold:

e It has the same number of dimensions as the conformant array
parameter.

e Its index type is compatible with the index-type specification
of the conformant array parameter.

e Its lower and upper bounds are within the range specified in the
conformant array parameter. (If they are not, the error is
detected only if the -RANGE option is specified.)

e Its component type is the same as or compatible with that of the
conformant array parameter.

Conformant arrays can be multidimensional. For a multidimensional
conformant array, put semicolons between the dimensions instead of
commas. An ordinary multidimensional array is declared

VAR SOMEARR : ARRAY [1..10, 1..20] OF INTEGER;

but a multidimensional conformant array parameter is declared

PROCEDURE CONF (VAR SOMEARR : ARRAY [LO..HI : SMALLRANGE;
TOE..HEAD : LARGERANGE] OF INTEGER) ;

A conformant array can also be PACKED, but only the last dimension of a
multidimensional conformant array can be PACKED. Moreover, there are
severe limits on the operations you can perform on a PACKED ARRAY OF
CHAR that is a conformant array parameter. In this situation, a PACKED
ARRAY OF CHAR behaves 1like an ordinary array: you cannot use
relational operators on it; you cannot read, write, or assign it as a
unit; you cannot use the STR function on it; and you cannot assign
the result of the UNSTR function to it. To avoid these limitations,
use the STRING type instead of the PACKED ARRAY OF CHAR. (The STRING
type is a Prime extension. See Chapter 6.)

Fourth Edition 9-12

PROCEDURES AND FUNCTIONS

If your program passes more than one array at a time as a conformant
array parameter, you should be careful to observe the rules for
assignment compatibility given in the ASSIGNMENT STATEMENT section of
Chapter 8. The following program is invalid because the array
variables are declared in different ways in the main program and in the
formal parameter specification.

PROGRAM Badconf:

VAR
A : ARRAY [1..5] OF INTEGER; {These arrays are of}
B : ARRAY [1..5] OF INTEGER; { different types.}

{The declaration A, B : ARRAY [1..5] OF INTEGER would be valid.}
COUNT : INTEGER;

PROCEDURE CONF (VAR C, D : ARRAY [LOW..HIGH : INTEGER] OF INTEGER)
{These two arrays share the same declaration, so they are of
the same type.}
BEGIN
C[LOW] := D[LOW]
END;

BEGIN
FOR COUNT := 1 TO 5 DO {initialize arrays}
BEGIN
A[COUNT]
B [COUNT]
END;

CONF (A, B) {call the procedure}
END.

This program would receive the following error message:

21 CONF (A, B)

ERROR 240 SEVERITY 3 BEGINNING ON LINE 21

This parameter must have the same type definition as the
previous parameter.

You should also be careful not to assign a value to either of the
array-bound identifiers. The assignment HIGH := 10, for example, would
generate the error message

10 HIGH := 10;

ERROR 178 SEVERITY 3 BEGINNING ON LINE 10
FOR loop control variable or a conformant array bound

identifier may not be assigned to, read in, or passed as
a VAR parameter.

9-13 Fourth Edition

PASCAL REFERENCE GUIDE

Procedures and Functions as Parameters

In Pascal, you can declare and pass a procedure or function as a
parameter. Any procedure or function can pass any other procedure or
function as a parameter.

Declaring Procedures and Functions as Parameters: A procedure or
function declaration must 1list another procedure or function as a
formal parameter. For example:

PROCEDURE A (PROCEDURE X) :;

If the procedure or function that is being passed has parameters of its
own, you must also list the number and types of parameters. For
example:

PROCEDURE A (PROCEDURE X (X1, X2 : INTEGER)):

If you are passing a function, you must state the type that the
function returns:

PROCEDURE A (FUNCTION Y(Y1l, Y2 : INTEGER) : INTEGER);

A procedure or function parameter can even have other procedures and/or
functions as parameters:

PROCEDURE A (FUNCTION Y (PROCEDURE Y1;
FUNCTION Y2 : CHAR) : INTEGER);

The procedure or function that is declared must match -- parameter for

parameter, in number and type -- the declaration for the procedure or
function that is passed.

Passing Procedures and Functions as Parameters: The name of a

procedure or function is passed the same way any variable is passed.
For example:

ADD (SORT) ;

Fourth Edition 9-14

PROCEDURES AND FUNCTIONS

The procedure named SORT is passed to a procedure named ADD. The name
SORT is passed without parameters, but the number and type of
parameters declared in the SORT procedure must match those in the ADD
declaration, parameter for parameter.

Five examples of procedure and function parameters follow.

Example 1:

{This program invokes a procedure that invokes another procedure.}

PROGRAM Calll (OUTPUT) ;
VAR
I : INTEGER:

PROCEDURE ADD1;
BEGIN
I:=1+1;
END;

PROCEDURE CALLPROC (PROCEDURE X) :
BEGIN
X; {Invokes procedure X}
END;

BEGIN {main program}

I :=20;
CALLPROC(ADD1) ; {PROCEDURE ADD1 is the actual parameter}
WRITELN(I) {I =1}

END.

9-15 Fourth Edition

PASCAL REFERENCE GUIDE

Example 2:

{This example invokes functions rather than procedures. FUNCTION ADDF
adds together the values returned by calling FUNCTION VAL10 twice.)

PROGRAM CallZ2 (OUTPUT) ;
VAR
I : INTEGER;

FUNCTION VAL10 : INTEGER;
BEGIN
VAL10 := 10 {Function value is 10}
END;

FUNCTION ADDF (FUNCTION X : INTEGER) : INTEGER;
BEGIN
ADDF := X + X ({Adds two function values together}
END;

BEGIN {main program}

I := ADDF (VAL10); {Actual parameter is FUNCTION VAL10}
WRITELN (I) (I = 20}
END.
Example 3:

{This example uses both a procedure and a function as parameters.}

PROGRAM Call3 (OUTPUT) ;
VAR
I, J : INTEGER;

FUNCTION SQUARE(X : INTEGER) : INTEGER;
BEGIN
SQUARE := X * X
END;

FUNCTION FCALLFUNC (FUNCTION Z(R : INTEGER) : INTEGER) : INTEGER;
BEGIN

FCALLFUNC := Z(5) ({Invokes specified function, with 5}
END:; { as actual parameter}

PROCEDURE PCALLFUNC (FUNCTION Y(Q : INTEGER) : INTEGER) ;

BEGIN
I :=Y(5) {Invokes specified function, with 5}
END; { as actual parameter}

BEGIN {main program}
J := FCALLFUNC(SQUARE):; {Invokes FCALLFUNC, then PCALLFUNC, }

PCALLFUNC (SQUARE) ; { both with SQUARE as actual parameter}
WRITELN (I, J) {I = 25; J = 25}
END.
Fourth Edition 9-16

PROCEDURES AND FUNCTIONS

Example 4:

{This example also uses both a procedure and a function as parameters.
The procedure and function in this program, however, do not operate
identically, as they did in Example 3.}

PROGRAM Call4 (OUTPUT) ;
VAR
I, J : INTEGER;

PROCEDURE ADD (X : INTEGER);

BEGIN

I:=1+X {Add value of parameter to}
END; { that of global variable}

FUNCTION FCALLPROC (PROCEDURE Z(R : INTEGER)) : INTEGER:;

VAR

R : REAL;
BEGIN

R := 2.19;

Z (ROUND(R)) ; {Call specified procedure}

FCALLPROC := 10 ({Function value is 10}
END;

PROCEDURE PCALLPROC (PROCEDURE Y (Q : INTEGER)) :

BEGIN
Y(8); {Call specified procedure, with 8}
END; { as formal parameter}

BEGIN {main program}

I :=0;
J := FCALLPROC (ADD):; {Invokes FCALLPROC with ADD}
WRITELN(I, J): {1 =2; J=10}
PCALLPROC (ADD) ; {Invokes PCALLPROC with ADD}
WRITELN (I, J) {I and J both = 10}

END.

9-17 Fourth Edition

PASCAL REFERENCE GUIDE

Example 5:

{The effect of this program is to call the function ADD1l three times.}

PROGRAM Calls5 (OUTPUT) ;
VAR
I : INTEGER;

PROCEDURE ADD2 (PROCEDURE Al) ;
BEGIN
Al; {Invokes specified procedure twice}
Al
END;

PROCEDURE ADD1:;
BEGIN
I :=I+ 1 {Increments global variable}
END:;

PROCEDURE CALLPROC (PROCEDURE X (PROCEDURE Y); PROCEDURE 2);

BEGIN

Z; {Invokes PROCEDURE Z; here, ADD1}

X(Z) {Invokes PROCEDURE X, with PROCEDURE Z}
END; { as actual parameter; here, ADD2 has ADD1}

{ as actual parameter}

BEGIN {main program}

I :=0;

CALLPROC (ADD2, ADD1):;

WRITELN (I) {I = 3}
END.

Note
A procedure or function cannot be a variable parameter. For
example:

PROCEDURE X (VAR PROCEDURE Y); ({this is invalid}

Any attempt to use a procedure or function as a variable
parameter causes the VAR to be ignored and a severity 2 error
to be given.

Fourth Edition 9-18

Example 1:

PROGRAM TEST;

PROCEDURE INDATA;...BHGIN...END;
PROCEDURE SORT'; . . .BEGIN...END;
PROCEDURE OUTDATA;...BEGIN.. .END;
{Main program begins here.}
BEGIN

INDATA;

SORT;

OUTDATA
END.

Example 2:

PROGRAM QURVE (INPUT,OUTPUT) ;
VAR

X, Y : REAL;

I : INTEGER;

PROCEDURES AND FUNCTIONS

PROCEDURE PLOT (A, B: REAL; J: INTEGER); {A, B, & J are formal value

BEGIN...END;
PROCEDURE ENDPLOT;

BEGIN...END;
{Main program begins here.}
BEGIN
X
Y:

0.0;
1.0 + SIN(X);

I :=1+2;

parameters. }

PLOT(X, ¥, I); {X, ¥, and I are actual parameters. }

9-11

Second Edition, Update 1

UPD4303-192

Standard Procedures

A standard procedure, denoted by a predefined identifier, is a built-in
procedure supplied by the Pascal language.

Prime Pascal supports the following standard procedures:

e File Handling Procedures: RESET, GET, REWRITE, PUT, READ,
READLN, WRITE, and WRITELN. (See Chapter 10.)

e I/0 Auxiliary Procedures: PAGE and CLOSE. (CLOSE is a Prime
extension. See Chapter 10.)

e Dynamic Allocation Procedures: NEW and DISFOSE. (See Chapter
6.)

Note

Use of the standard transfer procedures PACK and UNPACK
in Prime Pascal will generate a severity 3 error message
and cause your program to fail because PACK and UNPACK
are not supported in Prime Pascal. This is a Prime
restriction.

19.2

FUNCTIONS

Functions are also user-written subprograms. Here are some
characteristic traits of functions:

o The keyword FUNCTION is used instead of PROCEDURE.

e Similar to a procedure, a function is a subprogram.

® Unlike procedures and standard functions, the names of
user-written functions must represent values. Procedure names

and standard function names cannot represent values.

e Unlike a procedure, a data type must be specified for the
function itself in the function heading.

A function is an independent program unit that accepts zero or more
parameters to produce a single output value. A function must be
declared in a function declaration, a forward function declaration, or
an external function declaration before the function can be invoked.

Function declarations are discussed below. Forward and external
function declarations are discussed later in this chapter.

The external function declaration is a Prime extension to standard
Pascal.

Second Edition, Update 1 9-12

PROCEDURES AND FUNCTIONS

Function Declarations

The general form of a function declaration is:

FUNCTION identifier [(fomal—parameter—list)]:
resul t-type—identifier;

block;
The identifier is the name of the function. The result-type-identifier
is the data type of the function. The fo -parameter—-list consists

of parameters.

Example 1:

FUNCTION SQRT(X : REAL) : REAL;
{This function computes the square root of X (X>0) using Newton's
method. }
VAR
OLD, NEW : REAL;
BEHGIN
NEW := X;
REPEAT
OLD := NEW;
NEW := (OLD + X/OLD) * 0.5
UNTIL ABS(NEW - OLD) < EPS * NEW; {EPS being a global constant}
SQRT := NEW
END; {Function Sqgrt}

Example 2:

FUNCTION MAX(A : VECIOR; N : INDEXTYPE) : REAL;
{This function finds the largest value in A, which is declared
A : ARRAY[INDEXTYPE] OF REAL and where
INDEXTYPE = 1..LIMIT}
VAR
LARGESTSOFAR : REAL;
FENCE : INDEXTYPE;
BEGIN
LARGESTSOFAR := A[l];
{Establishes LARGESTSOFAR = MAX(A[1])}
FOR FENCE := 2 TO N DO
IF LARGESTSOFAR < A[I] THEN
LARGESTSOFAR := A[I];
{Re-establishing LARGESTSOFAR = MAX(A[l],.. .+A[FENCE]) }
{So now LARGESTSOFAR = MAX(A[l],...,A[N])}
MAX := LARGESTSOFAR
END; {Function MAX}

9-13 Second Edition

DOC4303-191

Invoking Functions

The appearance of the function name in a program invokes (or calls) and
executes the function subprogram. This invocation is called the
function designator. The function designator has the form:

function-identifier [(actual-parameter-1 [, actual-parameter-2]...)]

The function-identifier is the name of the called function. When the
called function has one or more formal parameters defined in its
heading, the function designator must contain the corresponding actual
parameters along with the function-identifier. Example:

VAR
J, K : INTEGER;
FUNCTION QUBE(I : INTEGER) : INTHGER;
BEGIN
QUBE := I * SQR(I)
END; {Function CUBE}
BEGIN {main program}
READLN(J) ;
K := QBE(J); {Function QUBE is invoked here.}

Standard Functions

A standard function, which has a predefined function name, _is a
built-in function supplied by the Pascal language. The available
standard functions are listed and explained in Chapter 11.

FORWARD PROCEDURES AND FUNCTIONS

Pascal permits subprograms to call each other within the same Pascal
program. Subprogram A may call subprogram B before B is fully defined

if B has already been declared using the forward declaration.

Second Edition 9-14

)

PROCEDURES AND FUNCTIONS

Forward Declarations

A forward declaration is like other subprogram declarations, except
that the subprogram block is replaced by the word FORVARD. This block,
led by the keyword PROCEDURE or FUNCTION and its associated subprogram
name, appears later in the program. Example:

FUNCTION GCD(N,M : INTEGER) : INTEGER; FORWARD;
PROCEDURE LONTERM (VAR N,D : INTHGER);
VAR

CD : INTEGER;
BEGIN

CD := GCD(N,D); {This statement needs the forward declaration.}

N := N DIV CD;

D := D DIV (D
END; {procedure LONTERM}
FUNCTION GCD; {Note the abbreviated heading}
{Full declaration of GCD begins here.}
VAR

R : INTHGER;
BEGIN

REPEAT

R := M MOD N;
IF R <> 0 THEN
BEGIN
M:
N :
END

UNTIL R = 0;

GCD := N
END; {function GCD}

N;
R

EXTERNAL PROCEDURES AND FUNCTIONS

Prime Pascal allows a program to call independent, external, separately
compiled subprograms after they have been declared with the external
declarations within the program. ‘These subprograms can be external
Pascal procedures and functions or subprograms written in other
languages. This is a Prime extension.

External Declarations

To declare an external, separately compiled subprogram, simply use the
word EXTERN at the end of a procedure or function heading, similar to
the FORWARD declaration. For example:

PROCEDURE PLOT(X, Y : REAL; I : INTHGER); EXTERN;

9-15 Second Edition

DOC4303-191

The body of the extermal subprogram does not appear in the calling
program. The external subprogram file will be located at 1cad time.

Note

Use the word EXTERN in every external subprogram declaration,
no matter what language the subprogram is written in.

The calling program calls the subprogram and passes parameters in the
usual way:

PLOT(X, Y, 3);

The parameters that are passed must be compatible with the parameters
of the subprogram in number and data type. (See Appendix D for
information on interfacing Pascal data types with those of other

languages.)

Subprograms Written in Pascal

When you write a subprogram in Pascal, you must tell the compiler that
the subprogram is to be compiled externally and that the subprogram
will be called by other programs.

Using the {$E+} Compiler Switch: To achieve these requirements, simply

put Pascal's {SE+} compiler switch at the beginning of every external
subprogram file, For example:

{SE+}
FUNCTION ADD(A, B : INTHGER) : INTEGER;
BHGIN
ADD := A+ B
END;

Do not use the {$E-} switch at the end of the file. Also, the
subprogram ends with a semicolon, not a period. Without the {SE+}
switch, the compiler would expect the main body of the program to be
included; that is, it would expect BEGIN...IND followed by a period.

Note
You can have many subprograms in the same file. If you have
many subprograms in a file, put only one {SE+} switch at the

top of the file. All of the subprograms within a file will
compile when the file itself is compiled.

For more information on the {$E+} compiler switch see Chapter 2.

Second Edition 9-16

")

PROCEDURES AND FUNCTIONS

Using the -EXTERNAL Option Instead of {$E+}: An alternmative to using
the |SE+] switch in the subprogram 1S to use the —EXTERNAL option every
time you compile the file of subprograms., For example:

PASCAL filename —EXTERNAL

The filename is the name of the file that contains the extermal
subprograms. (See Chapter 2 for more information on compiling

programs.)

Defining External (Global) Variables with {SE+}: If you want your
external subprograms to reference the variables that are declared in
the calling program, you must use the {$E+} and {SE-} switches in the
VAR declaration of the calling program. For example:

VAR

I, J : INTEGER;
{SE+}

X, Y, Z : INTEGER;
{SE-}

Here is an example of a program that calls an external procedure. It
has one variable, ADDSUM, that is used externally:

PROGRAM File 1;

VAR

I, J : INTEGER;
{SE+}

ADDSUM : INTEGER;
{SE-}

PROCEDURE ADD(A, B : INTHGER); EXTERN;
BEGIN {main program}
I :=23;
J := 45;
ADD(I, J); {external procedure is called here}
WRITELN (ADDSUM)
END.

Here is the external procedure ADD, which the above program calls.
Notice that the external variable ADDSUM must also be declared in the
subprogram at the top of the file, outside the procedure or function
block:

{SE+}
VAR

ADDSUM : INTEGER;
PROCEDURE ADD(A, B : INTHGER);
BEGIN

ADDSUM := A+ B
END;

9-17 Second Edition, Update 1

19.2

UPD4303-192

Declaring External Procedures and Functions: If you want your external

subprogram to call a procedure or function that is contained in the
maln program, you must use the {SE+} and {SE-} switches around the
procedure or function declaration in the main program.

Bere is an example of a main program that contains an externally
declared procedure:

VAR
A, B, C, D : INTEGER;
{SE+}
PROCEDURE ADD (X : INTEGER Y : INTEGER);
VAR
Z : INTEGER;
BEGIN {add}
2 :=X+Y;
WRITELN('Sum is ',Z)
END;
{SE-}
PROCEDURE MULT (P : INTEGER; Q : INTEGER); EXTERN;
BEGIN {main}
A := 8;
B :=9;
ADD(A, B);
C :=5;
D := 6;
MULT(C, D)
END.

Here is the external subprogram, that calls the procedure:

{SE+}
PROCEDURE ADD(X : INTEGER; Y : INTEGER); EXTERN;
PROCEDURE MULT (I : INTEGER; J : INTEGER);

VAR
M : INTEGER;
K, L : INTEGER;
BEGIN {mult}
K := 50;
L :=60;
M:==1*%J;

WRITELN('Mult is ',M);
ADD (K, L) {extermal procedure called here}
END;

Notice that the procedure is declared again under the {$E+} switch, and
that this procedure heading ends with EXTERN,

Compiling and Loading Subprograms: Remember that each external
subprogram file must be compiled and loaded separately. After you have
entered SEG's LOAD subprocessor, the main program must be loaded before
the separately compiled subprograms. For more information on
compiling, loading, and executing programs, see Chapters 2 and 3.

Second Edition, Update 1 9-18

PROCEDURES AND FUNCTIONS

External subprogram names, as well as the names of main programs,

cannot be more than 32 characters long.

Caution

Do not define a main program as external.

{SE+}
PROGRAM Main;

will result. The following example is invalid:

An error messade

Subprograms Written in Other Languages

Subprograms declared in external procedure or function declarations in

the main program can be written in any Prime

high-level language oOr

Prime Macro Assembly (PMA) language with certain restrictions:

e There must be no conflict of data types for variables being
passed as parameters. For example, a FIXED BINARY(15) in PL/I

is equivalent to an INTEGER in Pascal.

e Programs compiled in either 64V or 32I mode cannot reference or

be referenced by programs compiled in R mode.

or 321 mode may reference each other.

Programs in 64V

For more information on interfacing Pascal with other languages, see

Appendix D.

9-18A

Second Edition, Update 1

PROCEDURES AND FUNCTIONS

Subprograms from Lib raries

Prime supplies several libraries of application-level subroutines and
PRIMOS operating system subroutines. These subroutines can be declared
as external procedures or functions and then called from any point
within the prcgram. When a subroutine from such a library is being
used, the library must be loaded with SEG's LIBRARY command. (See
Chapter 2 for instructions.)

For more information on Prime's subroutines, see the Subroutines
Reference Guide.

REQURSIVE PROCEDURES AND FUNCTIONS

A subprogram can call itself. This process is called recursion. A
subprogram can keep calling itself for as many times as necessary.

Recursive subprograms are said to be at different "levels. " Whenever a
subprogram calls itself, a new set of identical local variables is set
up automatically and the values of these variables change back or
"initialize". The computer remembers and stores the values at each
"Jevel", so that when the program recurses back fram the innermost
subprogram to the outermost, the operations at each level finish
executing.

9-19 Second Edition

DOC4A303-191

The following program is a simple example of recursion in Pascal. This
program writes out a palindrome. A palindrome is a word that is
spelled the same way forward and backward. Given just half of the
palindrome in the input textfile, the program recurses and echoes the
entire palindrame back to the terminal:

PROGRAM PAL INDROME ;
VAR
X : CHAR;
PROCEDURE PUTPAL;
VAR
X : CHAR;
BEGIN
IF NOT (EOLN(INPUT)) THEN
BEGIN
READ (INPUT, X);
WRITE (X);
PUTPAL; {recursion happens here}
WRITE (X);
END;
END; {of PUTPAL procedure}
BEGIN {main program}
RESET (INPUT, 'indata');
WHILE NOT (EOF(INPUT)) DO
BEGIN
PUTPAL;
READLN(INPUT) ;
END;
WRITELN;
CLOSE (INPUT)
END.

If the input file contains the characters NO, the palindrame program
will recurse and print the word NOON at your terminal.

The following program is another good example of recursion:
PROGRAM Frog;

{Using a recursive procedure called JUMP, this program
calculates and writes out all of the ways a frog can jump to
the top of a 5-step flight of stairs, jumping one, two, or
three steps at a time. TOPSTEP is a constant that stands for
the fifth (top) step, and it flags the end of any of the frog's
series of jumps. WHICHSTEP is an array of type CURRENTSTEP
(0..5) that keeps track of the current step and which steps
were hit on the way up.}

CONST

TOPSTEP = 5;
TYPE

QURRENTSTEP = ARRAY[O..TOPSTEP] OF INTEGER;
VAR

WHICHSTEP : CURRENTSTEP;

Second Edition 9-20

")

PROCEDURES AND FUNCTIONS

{The procedure is declared. N, which increments the WHICHSTEP
position, is initially passed the value of 0 from the main
program. LEAP is the index for the outer FOR loop and it
controls the possible number of steps the frog can jump. I is
the index for the inner FOR loop that controls the writing out
of all the steps the frog hit on the way up. }

PROCEDURE JUMP (N : INTEGER);

VAR
LEAP : INTEGER;
I : INTEGER;

BEGIN {JUMP procedure}

{The outer FOR loop checks to see if the current step plus one
more leap is greater than the TOPSTEP. If not, then the
current step becomes the current step plus the leap.}

FOR LEAP := 1 TO 3 DO
BEGIN
IF (WHICHSTEP[N] + LEAP < 6) THEN
BEGIN
WHICHSTEP[N + 1] := WHICHSTEP([N] + LEAP;
IF WHICHSTEP[N + 1] = TOPSTEP THEN
BEGIN

{The inner FOR loop writes out all of the steps the frog hit on
the way up, if the frog has reached the TOPSTEP, with his
allowed number of leaps. }

FORI :=1 T (N+1) DO
WRITE (WHICHSTEP[I]);
WRITELN
END

9-21 Second Edition

DOC4303-191

{The procedure calls itself — keeps jumping — if the frog
hasn't reached the TOPSTEP, }

ELSE
JUMP(N + 1) {Recursion happens here}
END
END
END; {of JUMP procedure}

{The main program writes a heading, initializes WHICHSTEP and N
to zero, then goes into the recursive routine.}

BEGIN {main program}
WRITELN;
WRITELN;
WRITELN ('CQOMBINATION OF STEPS FROG CAN JUMP' :43) ;
WRITELN;
WHICHSTEP[0] := 0;
JUMP (0)
END,

When the program is executed, you will get the following output at your
terminal:

COMBINATION OF STEPS FROG CAN JUMP

GO TUTL T WW
(]

WWNNNN e
VBB WWE WWNN NN
u

Second Edition 9-22

Input and Output

In Prime Pascal, data can either be input from your terminal or be
input from a PRIMOS input data file. Similarly, the output can either
be written out to your terminal or to a PRIMOS output data file,

This chapter explains how to input and output data in Prime Pascal,
using both of these methods.

Throughout this chapter, various built-in 1/0 (input/output) functions
and procedures that manipulate data are discussed. These include eight
file-handling procedures (RESET, GET, READ, READLN, REWRITE, PUT,
WRITE, and WRITELN), two BOOLEAN functions (EOF and EOLN) and two
auxiliary procedures (PAGE and CLOSE).

Note

Prime Pascal performs I/O operations only on data stored in
disk files or data supplied at the terminal.

10-1 Second Edition, Update 1

UPD4303-192

INPUTTING AND OUTPUTTING DATA AT THE TERMINAL

When you execute a program, and your program requests data at execution
time, it can wait for you to input the data at your terminal. For
example:

PROGRAM Add;
VAR
A, B, C : INTEGER:;
BEGIN
READLN(A) ;
READLN(B) ;
C := A+ B;
WRITELN(C)
END.

In the example above, the computer expects you to enter two integers at
your terminal upon execution. The execution would look like this,
where user input is underlined:

OK, SEG ADD
30 T
50

80 {computer writes out result here}
OK,

For more information on executing programs, see Chapter 3.

If you were using READs instead of READILNS in the example above, you
could place the integers on the same line, separated by spaces or a
comma. For example, given the following statements:

READ(X, Y);
Z :=X+7Y;
WRITELN(Z) ;

your terminal input and execution would look like this:

OK, SEG ADD
30 50 80
OK,

A space placed after the 30 and after the 50 signals the end of each
integer. It also tells the computer that each integer has two digits.
Notice that with READs, the computer outputs the sum on the same 1line
as your input.

Second Edition, Update 1 10-2

INPUT AND OUTPUT

You can make the computer prompt you for input by putting WRITE or
WRITELN statements in your program. For example:

VAR
A,B,C : INTEGER;
BEGIN
WRITELN('Enter two numbers:');
REATAIN(A) ;
READLN(B) ;
C := A+B;
WRITELN(C)
END.

Your input and execution would look like this:

OK, SEG ADD
Enter two numbers:
10
20
30
OK,

If you were using READs on CHAR type data instead of INTEGER or REAL,

you would not put spaces between the input characters. Therefore, with
the following program:

PROGRAM Letters;
VAR
X, ¥, Z : CHAR;
BEGIN
WRITE ('Enter three letters: ');
READ(X, Y, 2):
WRITELN(X:10, ¥, Z)
END.

your input and execution would look like this:
OK, SEG LETTERS

Enter three letters: PQR PQR
OK,

The 10 in the WRITELN statement formats the output so that nine spaces

are placed before the P. Notice that the WRITE statement prompts you
for input.

10-3 Second Edition, Update 1

UPD4303-192

Using Erase and Kill Characters

PRIMOS provides two special character functions called erase and kill,
The erase character (the double quotation mark) erases the immediately
preceding character. For example, if you type 1235 when you wanted to
type 1234, you can correct your mistake by typing the double quote
followed by the correct input:

1235"4

The kill character (the question mark) deletes your entire current
line, For example, if you mistakenly type this:

123456789
and were supposed to type this:
ABCDEFGHI

you can correct your mistake by typing the question mark followed by
the correct input:

123456789 ?ABCDEFGHI

Note

Your System Administrator may have changed the Prime-supplied
erase and kill characters to some other characters. If so,
find out what they are. (You can change them yourself, too.)

How to Use Erase and Kill on Terminal Input: Before Rev. 19.1, use of
Prime's erase and Kkill characters on input from the terminal was not
possible because each character was assigned to the program as soon as
it was typed. Not only was it too 1late to use an erase or kill
character, but also an erase or kill character itself was assigned.

Now you can use the erase and kill characters by using the —INTERACTIVE
switch in the RESET statement in your program. For example:

VAR
I, J : INTEGER;
BEGIN
RESET (INPUT, '-INTERACTIVE');
READLN(I);
READLN (J)
END.

The -INTERACTIVE switch is a Prime extension. When this switch is
used, you can erase or kill anything on the current line — that is,
before you enter a carriage return. The word -INTERACTIVE must be
enclosed in single quotes.

Second Edition, Update 1 10-4

INPUT AND OUTPUT

Caution

You can only use READLNs with the —INTERACTIVE switch. Do not
use READs. A READ will not work with -INTERACTIVE because a
READ, by definition, still assigns a character as soon as it is
typed at the terminal, even before the carriage return is hit.
An attempt to use READs will generate an error message at
runtime.

The RESET statement opens a PRIMOS data file for reading. RESET is
usually used to open input data files; however, there are special
cases, such as the example above, where RESET is used to manipulate
input from the terminal. (RESET is fully discussed later in this

chapter.)

The word INPUT in the RESET statement is a standard Pascal textfile
identifier. -INTERACTIVE can only be used with the file INPUT. (For
more information on the special functions of the file types INPUT and
OUTPUT in Prime Pascal, see Chapter 6 and the discussion on data input
files later in this chapter.)

Caution

When the —INTERACTIVE switch is on, you cannot use CONTROL-C as
an end-of-file marker on terminal input. If you need an
end-of-file in your program, remove the —INTERACTIVE switch or
turn it off with the -TTY switch, explained below, before using
CONTROL-C.

How to Turn the —-INTERACTIVE Switch Off: Since the —INTERACTIVE
feature is a switch, you can turn it on or off within a program. If
you want to turn the —INTERACTIVE feature off use the -TTY feature in
another RESET statement. For example:

VAR
A, B, C, D : INTEGER;
BEGIN
RESET(INPUT, '-INTERACTIVE');
READLN(A) ;
READIN(B) ;
RESET (INPUT, '-TTY');
READ(C) ;
READ(D)
END.

tgse of —-TTY lets you go back to inputting data from the terminal in the

normal" way, without the use of Prime's erase and kill characters.
The -TTY switch must be used only with the standard file INPUT. (For
information on the other uses of -TTY, see the discussion on input data
files later in this chapter.)

10-5 Second Edition, Update 1

INPUT AND OUTPUT

Prime's —INTERACTIVE extension differs from standard Pascal in the
following ways:

® There is no such feature in standard Pascal.

® READs are not allowed when using -INTERACTIVE.

10-5A Second Edition, Update 1

UPD4303-192

Prime's —-INTERACTIVE extension differs from standard Pascal in the
following ways:

e There is no such feature in standard Pascal.

® READs are not allowed when using —INTERACTIVE.

e In standard Pascal, assignments are supposed to be done when a
character is typed at the terminal. With the —-INTERACTIVE
switch, assignments are done only after the carriage return is
hit.

® The erase and kill characters are given special meaning. In

standard Pascal, the carriage return is the only special
character.

INPUTTING AND OUTPUTTING DATA WITH PRIMOS FILES

In Prime Pascal, data can be input from an input data file. Similarly,
the computer can output data to an output data file. These data files
are PRIMDS files, similar to the PRIMS file that contains your
program. These PRIMOS files can be placed in any directory that you
wish.

Upon execution of your program, the computer opens input and output
files, retrieves the data from the input file, performs operations
using that data, outputs results into an output file, and closes the
input and output files.

Note

If you do not use input and output files, data will be input
from and output to the terminal by default.

CREATING AND USING INPUT DATA FILES

When you want to place data in a file to be read and operated on by a
program, you can create a new PRIMOS file and type your data into that
file, using Prime's line editor, ED, or Prime's screen editor, EMACS.
(See the New User's Guide to EDITOR and RUNOFF, the EMACS Primer, or
the EMACS Reference Guide.)

Once your data has been typed into the file, you would name the file,
as you would name any PRIMOS file.

Second Edition, Update 1 10-6

INPUT AND OUTPUT

The RESET Procedure

The RESET procedure statement, which opens an input file, must_be
placed in the executable part of the program before data from the file
is used. The format of RESET is:

RESET (file, 'filename');

The first parameter file is a Pascal file variable of a FILE type that
is associated with the input file. The second parameter 'fil ename' 1is
the actual name of the PRIMDS input file. This name must be enclosed
in single quotes. The inclusion of the second parameter, the PRIMOS
filename, is a Prime extension.

Consider the following example:

PROGRAM Readfile;
VAR
A, B, C : INTHEGER;
INFILE : FILE OF CHAR;
BEGIN
RESET (INFILE, 'INDATA');
READ (INFILE, B);
READ(INFILE, B):
C := A+ B;
WRITELN(C) ;
CLOSE (INFILE)
END,

The name of the input file (the second parameter) can be either a
simple filename, as shown above, or a pathname. For example:

RESET (INFILE, 'PAUL>HOMEWORK>INDATA');

The file INDATA resides in the subdirectory HOMEWORK within the
directory PAUL. The pathname also must be in single quotes. (For more
information on UFDs and sub-UFDs, see the Prime User's Guide.)

In the sample program above, notice that the file variable INFILE must
be declared as a file. The CLOSE procedure must be used to close a
data file. (CLOSE is discussed later in this chapter.)

You can also use a variable to represent a filename, and use that
variable in the RESET procedure to open a file. For example:

VAR
A : ARRAY[1l..32] OF CHAR;

RESET (INFILE, A);

10-7 Second Edition

DOC4303-191

Using a variable is particularly useful when you have to read data fram
different input files. For example, consider this program:

PROGRAM Pickafile;
VAR
F : FILE OF CHAR;
I : INTEGER;
FILENAME : ARRAY[1..128] OF CHAR;
BEGIN
WRITE('Please type in the name of file to be processed:');
READLN(FILENAME) ;
RESET(F, FILENAME);
WHILE NOT EOF(F) DO
BEGIN
READLN(F, I);
WRITELN(I)
END;
CLOSE (F)
END.

When you execute this program, it will ask you for the name of the data
file, open that file, and perform its operations using the data in that
file.

Note

RESET does an implicit GET,

If you create an input file using one of Prime's text editors, you
should declare the file variable as FILE OF CHAR, regardless of the
type of data values you're using — INTHGER, REAL, BOOLEAN, and so on.
Because the editor interprets all data as ASCII characters, you would
not be able to read the data in your input file if the file variables
were declared FILE OF INTBGER, FILE OF REAL, or anything other than
FILE OF CHAR.

A file that has been declared FILE OF CHAR is commonly called a
t.eﬂf.il’

Seocond Edition 10-8

INFUT AND QUTPUT

If you declare a file to be FILE OF INTEGER, FILE OF REAL, etc., the
input file should be created by the Pascal compiler, not the text
editor. You can accomplish this by making a program or subprogram
generate the input file. Suppose you wanted to place five integers
into an input file that 1is created by Pascal. You could read five
integers from the terminal, write the integers out to an output file,
and then make the outfile the input file, For example:

VAR
A, B, C, D, E : INTHGER;
DATAFILE : FILE OF INTEGER;
BEGIN
READ(A, B, C, D, E);
REWRITE (DATAFILE, 'DATA');
WRITE (DATAFILE, A, B, C, D, E);
RESET (DATAFILE) ;
READ (DATAFILE, A, B, C, D, E);
CLOSE (DATAFILE)
END.

The file variable is declared FILE OF INTHGER. Five integers are read
from the terminal upon execution. An ouptut file named DATA is opened
with the REWRITE procedure. The five integers are written out to that
file. The same file is reopened as an input file with RESET. The five
integers are read again — this time from the new input file, which is
still named DATA. (The RBWRITE procedure is discussed later in this
chapter.)

Note

When a nontextfile is created using Pascal — FILE OF INTHEGER,
FILE OF REAL, etc. — and not the text editor, you cannot
modify the contents of that file with the editor because the
data are stored in bimary form and not as ASCII characters.
The data in your input file created by Pascal would be
unrecognizable to you. Your data, therefore, would have to be
modified by a Pascal program or subprogram. Also, the standard
procedures READLN and WRITELN can only be used on files of type
FILE OF CHAR. The other standard procedures (READ, WRITE, GET,
and PUT) can be used on files of any other type.

10-9 Second Edition

DOC4303-191

You can declare file types using structured
ARRAY, and SET. For example:

TYPE
IOREC = RECORD
A: INTHGER;
B: ARRAY [l..6] OF CHAR;
C: (LEFT, RIGHT)
END;
VAR
F: FILE OF IOREC;
BEGIN

RESET(F, 'Fl1');

Remember that files not declared as FILE
above, cannot be modified with a text editor.
with a Pascal program or subprogram only.

Using the TEXT File Type

types such as RECORD,

OF CHAR, such as the one
They must be modified

Standard Pascal has a standard FILE type called TEXT. It is identical
to FILE OF CHAR. Whenever you are using CHAR type data in an input
file — or whenever you declare any file as FILE OF CHAR to use Prime's
text editors — you can simply declare it as TEXT instead., For
example, the following declarations are identical:

VAR
F : FILE OF CHAR;

VAR
F : TEXT;

For more information on TEXT, see Chapter 6.

Using the Standard Textfile INPUT

Standard Pascal also has a standard textfile called INPUT. ‘This
textfile does not have to be declared as a FILE type. For example:

VAR
A : INTHGER;

BHGIN
RESET(INFUT, 'INDATA');
READLN(INPUT, A);

Second Edition 10-10

INPUT AND OUTPUT

When INPUT is used with a data file, the name of the file must be given
as the second parameter in the RESET procedure, as shown above.

If a file is not specified in a READ or READLN statement, the standard
textfile INPUT is assumed. For example, the following have the same
effect, whether the standard textfile INPUT is a data file or the
terminal:

READ(INPUT, A);

READ(A) ;

For more information on INPUT, see Chapter 6.

Switching from Standard INPUT File to Terminal

If you open an input data file with the standard textfile INPUT, and
want to switch to inputting data from the terminal, use the -TTY switch
in another RESET procedure. For example:

VAR
A, B : INTEGER;

BEGIN
RESET (INPUT, 'INDATA');
READLN (INPUT, A);
RESET (INPUT, '-TTY');
READ (B)

END.

The value of A will be read from an input file named INDATA, and the
value of B will be read from the terminal. The standard file INPUT is
the first parameter with -TTY. The -TTY switch must be enclosed in
single quotes.

The —-TTY switch also works with REWRITE and the standard textfile
OUTPUT.

CREATING AND USING OUTPUT DATA FILES

When you want to write data out to an output file, simply open the file
and name it using the REWRITE procedure.

The REWRITE Procedure

The format of the REWRITE procedure statement is:

REWRITE (file, 'filename');

10-11 Second Edition, Update 1

UPD4303-192

The first parameter file is a Pascal file variable of a FILE type that
is associated with ~the output file. The second parameter, 'filename'
is the actual name of the PRIMDS file. This name must be enclosed in
single quotes. The inclusion of the second parameter is a Prime
extension,

You do not have to create a PRIMOS output file beforehand. The REWRITE
procedure will create a PRIMOS file for you upon execution., For
example:

PROGRAM Writeout;
VAR
A, B, C : INTEGER;
OUTFILE : FILE OF CHAR;
BEGIN
READELN(A) ;
READLN(B) ;
C :=A+ B;
REWRITE (OUTFILE, 'OUTDATA');
WRITELN (OUTFILE, C);
CLOSE (OUTFILE)
END.

OUTFILE is declared as FILE OF CHAR. A and B are read from the
terminal. REWRITE creates a PRIMDS file named OUTDATA in your
directory. The value of C is written out to the new file, and the file
is closed with CLOSE. (The CLOSE procedure is discussed later in this
chapter.)

The second parameter 'filename' can also be a pathname. For example:

REWRITE (OUTFILE, 'PAUL>HOMEWORK>OUTDATA') ;
An output file called OUTDATA will be created in the subdirectory
HOMEWORK within the directory PAUL.
Note

Be sure to find out what your directory access rights are at
your installation.

Second Edition, Update 1 10-12

r

INPUT AND OQUTPUT

A variable can also represent an output filename, and you can use that
variable in a REWRITE procedure to open a file:

VAR

QUTFILE : TEXT;

A : ARRAY[1..11] OF CHAR;
BEGIN

A := '"PAUL>SAMPLE';

REWRITE (OUTFILE, A) {This is equivalent to}

{REWRITE (OUTFILE, ' PAUL>SAMPLE'") }

END.

Output files, like input files, can contain data of a structured type.
For example:

TYPE

A = ARRAY[1..10] OF CHAR;
VAR

OUTDATA : FILE OF A;

Using the Standard Textfile QUTPUT

Pascal has a standard textfile called OQUTPUT. This is similar to the
standard textfile INPUT, which was explained earlier in this chapter.
QUTPUT does not have to be declared as a file. For example:

VAR
A : ARRAY[1..60] OF CHAR;
BHGIN
REWRITE (OUTPUT, 'OCUTDATA');
WRITELN(OUTPUT, A);
CLOSE (OUTPUT)
END.

When QUTPUT is used with an output file, the name of the file must
still be given as the second parameter in the REWRITE procedure, as
shown above.

If a file is not specified in a WRITE or WRITELN statement, the
standard textfile QUTPUT is assumed. For example, the following have

the same effect, whether the standard textfile QUTPUT is a data file or
the terminal:

WRITE (OUTPUT, A);
WRITE (A) ;

For more information on OUTPUT, see Chapter 6.

10-13 Second Edition

18.3

DOCA303-191

Switching from Standard OUTPUT File to Terminal

If you open an output data file with the standard textfile QUTPUT, a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>