
Prime Computer, Inc.

DOC 4303-191L
Pascal Reference Guide
Revision 19#l

UPDATE PACKAGE

UFD4303-192

f o r

PASCAL REFERENCE GUIDE, DOC4303-191

June 1983

This Update Package, UPD4303-192, is Update 1 for the December 1982
Edition of the Pascal Reference Guide, DOC4303-191. This package
contains 264 pages. A list of effective pages appears on the next
page.

Changes made to the text since the last printing are identified by
vertical bars in the margin. Change bars with numbers identify new
Pascal features of Software Release 19.2. Change bars without numbers
identify documentation corrections and clarifications.

Copyright © 1983 by Prime Computer, Incorporated
Technical Publications Department
500 Old Connecticut Path
Framingham, MA 01701

The information contained on these updated pages is subject to change
without notice and should not be construed as a commitment by Prime
Computer Corporation. Prime Computer Corporation assumes no
responsibility for any errors that may appear in this package.

PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.
PRIMENET, RINGNET, Prime INFORMATION and THE PROGRAMMER* S COMPANION are
trademarks of Prime Computer, Inc.

(Pages with changes, enclosed with this package, are underlined.)

Effective Pages for the Pascal Reference Guide at Software Release
19.2.

P a g e s P a g e s

i i t o v 8 - 1 t o 8 - 2
v i t o i x 8 - 3
x t o x i i i 8 - 4 t o 8 - 1 6

1 - 1 t o 1 - 2 9 - 1 t o 9 - 8
1 - 3 9 - 9 t o 9 - 9 A
1 - 4 t o 1 - 6 9 - 1 0 t o 9 - 1 1

9-12
2 - 1 t o 2 - 2 9 - 1 3 t o 9 - 1 7
2 - 3 9 - 1 8 t o 9 - 1 8 A
2 - 4 t o 2 - 6 9 - 1 9 t o 9 - 2 2
2-7
2 - 8 t o 2 - 1 0 1 0 - 1
2 - 1 1 1 0 - 2 t o 1 0 - 3
2 - 1 2 t o 2 - 1 3 1 0 - 4
2 - 1 4 1 0 - 5 t o 1 0 - 5 A
2 - 1 5 t o 2 - 1 7 1 0 - 6 t o 1 0 - 1 0

10-11 to 10-12
3 - 1 1 0 - 1 3 t o 1 0 - 2 3
3 - 2 1 0 - 2 4
3-3 to 3-8

11-1
4 - 1 t o 4 - 4 1 1 - 2 t o 1 1 - 4
4 - 5 H - 5
4-6 to 4-8
4 - 9 A - 1 t o A - 3
4 - 1 0 A - 4 t o A - 4 A
4 - 1 1 A - 5
4-12

5-1 \
5 - 4 B - 8 t o B - 9
5-5 to 5-15

D- l
6 - 1 t o 6 - 2 D - 2
6 - 3 t o 6 - 8 D - 3 t o D - 8
6 - 9 D - 9
6-10 to 6-13
6 - 1 4 t o 6 - 1 4 L X - l t o X - 1 6
6-15 to 6-16
6-17 to 6-17A
6-18 to 6-33

7-1
7-2 to 7-4
7-5 to 7-6
7-7 to 7-7A
7-8

B-l
5 - 1 t o 5 - 3 B r - 2 t o B - 7

Pascal Reference Guide

DOC4303-191
Second Edition

by
A. Paul Gioto

Updated for Software Release 19.2

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.2 (Rev. 19.2).

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l icense.

Copyri^it © 1982 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, PRIME INFORMATION, and THE PROGRAMMER'S COMPANION
are trademarks of Prime Computer, Inc.

HCW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers

Software Distribution
Prime Computer, Inc.
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053

Customers Outside U.S.

Contact your local Prime
subsidiary or distributor.

Prime Employees

Communications Services
MS 15-13, Prime Park
Natick, MA 01760
(617) 655-8000 X4837

PRIME INFORMATION

Contact your Prime
INFORMATION dealer.

i i

PRINTING HISTORY — PASCAL REFERENCE GUIDE

Ed i t i on

First Edition
Update 1
Udpate 2
Second Edition
Update 1

Date

October 1980
December 1980
July 1982
December 1982
June 1983

Number

IER4303
FTU2600-080
PTU26700-086
DOC4303-191
UPD4303-192

Software Release

17.6
18.1
19.0
19.1
19.2

The Second Edition is a complete revision of IDR4303. It
incorporates update material up to and including software
release 19.1, corrects all known errors, and has been revised
for c lar i ty.

Changes made to the text since the last printing have been
indicated with change bars in the margin. Change bars with
numbers indicate technical changes. Those without numbers
indicate rewrites for clarification or additional information.

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

A. Paul Cioto
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

i n

Contents

A B O U T T H I S B O O K x i

PART I - OVERVIEW

1 IN-RODUCTION TO PRIME PASCAL

T h e P a s c a l L a n g u a g e 1 - 2
P r i m e P a s c a l 1 - 2
C o n t e n t s o f T h i s B o o k 1 - 2
R e l a t e d D o c u m e n t s 1 - 4
In ter face to Other Languages 1-6

PART II - COMPILING, LOADING,
AND EXECUTING PROGRAMS

2 USING THE PASCAL COMPILER

I n t r o d u c t i o n 2 - 1
I n v o k i n g t h e C o m p i l e r 2 - 2
C o m p i l e r E r r o r M e s s a g e s 2 - 2
F i l e n a m e C o n v e n t i o n s 2 - 4
C o m p i l e r O p t i o n s 2 - 6
Compi le r Op t ion Abbrev ia t ions 2 -13
C o m p i l e r S w i t c h e s 2 - 1 6

3 LOADING AND EXECUTING PROGRAMS

L o a d i n g P r o g r a m s 3 - 1
E x e c u t i n g P r o g r a m s 3 - 7

PART III - PRIME PASCAL LANGUAGE REFERENCE

4 PASCAL LANGUAGE ELEMENTS

D e fi n i t i o n s 4 - 2
P a s c a l C h a r a c t e r S e t 4 - 4
K e y w o r d s 4 - 7
I d e n t i fi e r s 4 - 7

v

N u m e r i c C o n s t a n t s 4 - 8
C h a r a c t e r - s t r i n g s 4 - 1 1
D e c l a r a t i o n s a n d S t a t e m e n t s 4 - 11
L i n e F o r m a t 4 - 1 1
Comments, Blanks, and Ends of Lines 4-11

5 PASCAL PROGRAM STRUCTURE

P r o g r a m H e a d i n g 5 - 1
T h e B l o c k 5 - 3
D e c l a r a t i o n P a r t 5 - 4

L A B E L 5 - 4
C O N S T A N T 5 - 6
T Y P E 5 - 6
V A R I A B L E 5 - 7
PROCEDURE and FUNCTION 5-9

E x e c u t a b l e P a r t 5 - 9
A P r o g r a m E x a m p l e 5 - 1 1

6 DATA TYPES

S c a l a r D a t a T y p e s 6 - 1
Standard Scalar Data Types 6-2

I N T E G E R 6 - 3
L O N G H S T T E G E R 6 - 4
R E A L 6 - 6
L O N G R E A L 6 - 7
B O O L E A N 6 - 8
C H A R 6 - 8

User-defined Scalar Data Types 6-10
E n u m e r a t e d 6 - 1 0
S u b r a n g e 6 - 1 2

S t r u c t u r e d D a t a T y p e s 6 - 1 4
1 9 . 2 1 T h e S T R I N G T y p e 6 - 1 4

T h e A R R A Y T y p e 6 - 1 4
T h e R E C O R D T y p e 6 - 2 0
T h e S E T T y p e 6 - 2 5
T h e F I L E T y p e 6 - 2 7

T E X T 6 - 2 9
T h e P o i n t e r T y p e 6 - 3 1

7 EXPRESSIONS

O p e r a n d s 7 - 1
O p e r a t o r s 7 - 2

A r i t h m e t i c O p e r a t o r s 7 - 2
R e l a t i o n a l O p e r a t o r s 7 - 3
S E T O p e r a t o r s 7 - 5
B O O L E A N O p e r a t o r s 7 - 6
I n t e g e r O p e r a t o r s 7 - 7

1 9 . 2 1 S T R I N G C o n c a t e n a t i o n O p e r a t o r 7 - 7
O p e r a t o r P r e c e d e n c e 7 - 7

v i

8 STATEMENTS

S u m m a r y o f S t a t e m e n t s 8 - 1
A s s i g n m e n t S t a t e m e n t 8 - 2
P r o c e d u r e S t a t e m e n t 8 - 3
C o m p o u n d S t a t e m e n t 8 - 4
E m p t y S t a t e m e n t 8 - 5
C o n t r o l S t a t e m e n t s 8 - 5

R e p e t i t i v e S t a t e m e n t s 8 - 6
R E P E A T 8 - 6
W H I L E 8 - 7
F O R 8 - 8

C o n d i t i o n a l S t a t e m e n t s 8 - 1 0
I F 8 - 1 0
C A S E 8 - 1 1

U n c o n d i t i o n a l S t a t e m e n t 8 - 1 4
G O T O 8 - 1 4

W I T H S t a t e m e n t 8 - 1 6

9 PROCEDURES AND FUNCTIONS

P a r a m e t e r s 9 - 2
P r o c e d u r e s 9 - 9
F u n c t i o n s 9 - 1 2
Forward Procedures and Functions 9-14
External Procedures and Functions 9-15
Recursive Procedures and Functions 9-19

10 INPUT AND OUTPUT

Inputting and Outputting Data
a t t h e T e r m i n a l 1 0 - 2

Inputting and Outputting Data
w i t h P R I M O S F i l e s 1 0 - 6

Creating and Using Input
D a t a F i l e s 1 0 - 6

T h e R E S E T P r o c e d u r e 1 0 - 7
Creating and Using Output

D a t a F i l e s 1 0 - 1 1
T h e R E W R I T E P r o c e d u r e 1 0 - 11

I/O Procedures and Funct ions 10-14
Input File-handling Procedures 10-15

G E T 1 0 - 1 5
R E A D 1 0 - 1 5
R E A D L N 1 0 - 1 7

Output File-handling Procedures 10-18
P U T 1 0 - 1 8
W R I T E 1 0 - 1 8
W R I T E L N 1 0 - 2 2

B O O L E A N F u n c t i o n s 1 0 - 2 2
E O F 1 0 - 2 2
E O L N 1 0 - 2 3

vi l

A u x i l i a r y P r o c e d u r e s 1 0 - 2 3
P A G E 1 0 - 2 3
C L O S E 1 0 - 2 4

11 STANDARD EUNCTIONS

A r i t h m e t i c F u n c t i o n s 1 1 - 1
A B S l 1 " 1
S Q R H " 1
S I N 1 1 _ 1
C O S H " 1
E X P 1 1 _ 2
LN
SQRT

ORD

ODD
EOF
EOLN

11-2
11-2

A R C T A N 1 1 _ 2
T r a n s f e r F u n c t i o n s H - 2

T R U N C 1 1 - 2
R O U N D 1 1 " 2

O r d i n a l F u n c t i o n s 1 1 - 311-3
C H R 1 1 _ 3
S U C C u - 3
P R E D I 1 " 4

B O O L E A N F u n c t i o n s 1 1 - 511-5
11-5
11-5

1 9 . 2 I S T R I N G F u n c t i o n s H - 5

APPENDIXES

A SUMMARY OF PRIME EXTENSIONS
AND RESTRICTIONS

P r i m e E x t e n s i o n s A - 1
P r i m e R e s t r i c t i o n s A - 5

B DATA FORMATS

O v e r v i e w B - l
I N T E G E R T y p e D a t a B - 2
LONGINTEGER Type Data B-2
S u b r a n g e T y p e D a t a B - 3
R E A L T y p e D a t a B - 3
L O N G R E A L Ty p e D a t a B - 3
C H A R T y p e D a t a B - 4
B O O L E A N T y p e D a t a B - 4
E n u m e r a t e d Ty p e D a t a B - 4
A R R A Y T y p e D a t a B - 5
R E C O R D T y p e D a t a B - 5
S E T T y p e D a t a B - 5

v i n

F I L E T y p e D a t a B - 6
P o i n t e r T y p e D a t a B - 8
S T R I N G T y p e D a t a B - 9 1 1 9 . 2

C ASCII CHARACTER SET

P r i m e U s a g e c ~ l
S p e c i a l C h a r a c t e r s C - 2
K e y b o a r d I n p u t c " 2

D INTERFACING PASCAL TO OTHER LANGUAGES

O v e r v i e w D " ^
Interfacing INTEGER, BOOLEAN,

a n d E n u m e r a t e d D - 3
I n t e r f a c i n g L O N G I N T E G E R D - 4
I n t e r f a c i n g R E A L D - 4
I n t e r f a c i n g L C N G R E A L D - 5
Interfacing CHAR and ARRAY

O F C H A R - > - 5
I n t e r f a c i n g P o i n t e r D - 6
I n t e r f a c i n g S E T D - 7
I n t e r f a c i n g R E C O R D D - 7
I n t e r f a c i n g S T R I N G D - 9 1 1 9 . 2

INDEX X-l

I X

About
This Book

This book is a reference guide to the Pascal language as implemented on
Prime computers. It documents Prime's Pascal compiler, along with
Prime's extensions and restrictions to standard Pascal. The generic
term Prime Pascal refers to the way standard Pascal is implemented on
Prime computers, including all Prime's extensions and restrictions.

You are expected to be familiar with the Pascal language, and with
programming in general, but not necessarily with Prime computers. For
example, if you are a programmer at an installation that uses Prime
Pascal, or if you are a Pascal instructor or student at a university
that uses Prime Pascal, this book would be particularly useful.

HOW TO USE THIS BOOK

This book is divided into three parts:

• Part I — Overview (Chapter 1)

• Part II — Compiling, Loading, and Executing Programs (Chapters
2 and 3)

• Part III — Prime Pascal Language Reference (Chapters 4-11)

Four appendixes and an index follow Chapter 11.

If you are already familiar with Prime Pascal, but want to brush up on
using the Prime system to compile, load, and execute programs, read
Part II first.

x i

If you are not familiar with Prime Pascal, turn to Part I for a
detailed chapter-by-chapter description of what this book contains.
Part I also lists several other Prime documents that you will need in
conjunction with the Pascal Reference Guide.

After reading Part I, turn to the chapters in Part III that you think
will help you become familiar with Prime Pascal. Chapters 4, 5, and
1 0 — P a s c a l l a n g u a g e e l e m e n t s , p r o g r a m s t r u c t u r e , a n d
input/output — are good places to start. You should also read
Appendix A, which summarizes the differences between Prime Pascal and
standard Pascal (Prime extensions and restrictions).

Change bars in the margins reflect changes made to the text since the
first edi t ion, which was publ ished at sof tware re lease 17.6
(Rev. 17.6). Change bars with numbers indicate technical changes and
the software release of those changes. Change bars without numbers
indicate rewrites for clarifications or additional information.

DOCUMENTATION CONVENTIONS

The following conventions are used in command formats,
formats, in examples, and in the documentation in general.

statement

C o n v e n t i o n E x p l a n a t i o n

underl ining In examples of computer-
in examples user dialog, user input is
of computer- underlined and system output
user dialog is not.

UPPERCASE Words in uppercase signify
Pascal standard identifiers,
keywords, commands, compiler
options, and data types.
However, any of these can be
typed in uppercase or lower
case.

Examples

OK, SEG -LOAD
[SEG rev 19.1]
$ LOAD TEST

The REAL type
The ORD function
LOAD
The -DEBUG option

UPPERCASE Examples of Pascal code
in program appear in uppercase for
examples cons is tency. However, p ro

grams can be typed in upper
case or lowercase.

WHILE NOT EOLN DO
BEGIN

READ (A);

x i l

lowercase

Brackets
[]

E l l i p s i s

Parentheses
0

Hyphen

Vert ical
slash

In command formats, words
in lowercase indicate items
for which you must substi
tute a suitable value.

In command, option, or
statement formats, brackets
enclose a list of one or
more of these items. Choose
none, one, or more of these
items. (Do not confuse
these brackets with array
index or set brackets.)

In command and statement
formats, and in program
examples, an ellipsis indi
cates the preceding item may
be repeated, or that there
are more statements to be
processed.

When parentheses appear in
a statement format, they
must be included literally
when a statement is used.

Whenever a hyphen appears
in a command line option,
it is a required part of
that option.

In command or statement
formats, vertical slashes
indicate a choice of one
item or another.

LOAD filename

-LISTING [argument]

statement-1...
statement-n

RESET (file,'filename');

PASCAL TEST -XREF

READLN (file|variable);

X l l l

PA R T I

Overview

Introduction to
Prime Pascal

This document is a programmer's reference guide to the Pascal language
as implemented on Prime computers.

You are expected to be familiar with the Pascal language, and with
programming in general, but not necessarily with Prime computers. If
you are unfamiliar with the language, there are many commercially
available instruction books, such as:

Cherry, G., Pascal Programming Structures, Reston Publishing Co.,
Inc., New Jersey, 1980.

Cooper, Doug and Clancy, Michael, Ohl Pascal!, W. W. Norton &
Company, New York and London, 1982.

Jensen, Kathleen and Wirth, Niklaus, PASCAL User Manual And Report,
Second Edition. Springer-Verlag, New York, 1978.

Schneider, G., Weingart, S. and Perlman, D., An Introduction To
Programming And Problem Solving With PASCAL, John Wiley & Sons,
Inc., New York, 1978.

1 - 1 S e c o n d E d i t i o n

DOC4303-191

THE PASCAL LANGUAGE

Pascal is a multipurpose structured programming language that can be
used for system, commercial, and scientific data processing. Pascal is
also used as the principal instructional language in many educational
institutions. This language, developed in 1968 by Professor Niklaus
Wirth at the Eidgenossische Technische Hochschule (ETH) in Zurich,
Switzerland, is a descendent of the language ALGQL-60. Pascal is named
for the French mathematician Blaise Pascal.

PRIME PASCAL

Prime Pascal refers to the way standard Pascal is implemented on Prime
computers, including all of Prime's enhancements and limitations to
standard Pascal. m this book, when the Pascal language is mentioned,
it refers to Prime Pascal as a whole.

Prime Extensions and Restrictions

Prime Pascal varies from standard Pascal in several ways. Prime has
created many enhancements, which are commonly called extensions, as
well as limitations, which are called restrictions. Throughout this
book, Prime's extensions and restrictions are clearly identified when
they are discussed.

Appendix A lists Prime extensions and restrictions, along with the
chapter in which each is discussed.

03NTENTS OF THIS BOOK

The following is a brief chapter-by-chapter description of the contents
of this book.

Part I — Overview

• Chapter 1 contains a brief introduction to the Pascal language
as implemented on Prime computers.

S e c o n d E d i t i o n 1 - 2

INTRODUCTION TO PRIME PASCAL

Part II — Compiling, Loading, and Executing Programs

• Chapter 2 provides information on the use of Prime's Pascal
compiler, including compiler options.

• Chapter 3 provides information on loading and executing programs
with Prime's SEG utility.

Part III — Pascal Language Reference

• Chapter 4 provides brief descriptions of Pascal language
elements and of terms used throughout Part III.

• Chapter 5 lists the fundamental elements of the Pascal program
structure.

• Chapter 6 describes the data types available in Pascal,
including three Prime extension data types called IXNGINTEGER, 19<2
LONGREAL, and STRING.

• Chapter 7 describes the use of Pascal expressions.

• Chapter 8 describes the use of executable Pascal statements.

• Chapter 9 describes the use of procedures and functions,
including external procedures and functions, which are declared
with Prime's EXTERN attribute.

• Chapter 10 offers a detailed discussion of how to input and
output data in Prime Pascal.

• Chapter 11 lists standard Pascal functions.

Appendixes

• Appendix A summarizes Prime extensions and restrictions to
standard Pascal; It also references the chapter in which each
extension or restriction is discussed.

• Appendix B illustrates how Prime Pascal data types are
represented in storage.

• Appendix C lists the ASCII character set, which Prime Pascal
uses.

• Appendix D lists guidelines for interfacing Pascal to some of
Prime's other high-level languages.

1 - 3 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

Error Messages

Pascal compiler error messages, which were designed to be
self-explanatory, appear on your terminal at compile time, and in the
listing file if one is created. Therefore, the messages are not listed
in this book.

RELATED DOCUMENTS

In addition to the Pascal Reference Guide, you will most likely need
other documents to help you take full advantage of Prime's powerful
utilities, which are separately priced products. These documents are
listed below.

Prime User's Guide

Complete instructions for creating, loading, and executing programs in
Prime Pascal or in most Prime languages, plus extensive additional
information on Prime system utilities for programmers, are found in the
Prime User's Guide. The Prime User's Guide and the Pascal Reference
Guide are both essential to the Pascal programmer.

The Prime User's Guide also contains a complete guide to all Prime
documentation.

Draft Proposal "X3J9/81-093" Programming Language Pascal

The definitive reference for standard Pascal is The Draft Proposal
"X3J9/81-093" Programming Language Pascal. Every installation that
uses Pascal extensively should have a copy of this proposed standard,
which may be obtained from American National Standards Institute, 1430
Broadway, New York, NY 10018.

New User's Guide to EDITOR and RUNOFF

Prime's EDITOR is an interactive line-oriented text-editing utility.
It is used to enter and modify text in the computer. New programs that
do not rely on cards or tapes can be input to the system at a terminal
using EDITOR.

The New User's Guide to EDITOR and RUNOFF contains a complete descrip
tion of the EDITOR, and describes RUNOFF, Prime's text-formatting
utility. It also provides a basic introduction to the Prime system for
those with little or no computer experience.

Second Edit ion, Update 1 1-4

INTRODUCTION TO PRIME PASCAL

EMACS Primer and EMACS Reference Guide

Prime's screen editor, EMACS, can also be used to input and modify new
programs. The Primer is designed for users who do not know EMACS. The
reference guide is a quick reference for users already familiar with
EMACS.

LOAD and SEG Reference Guide

Ordinarily, to load and execute programs you need only the information
given in the Pascal Reference Guide or the Prime User's Guide. If you
wish to control the load process in more detail, or use the full range
of Prime loader capabilities, see the LOAD and SEG Reference Guide.

Subroutines Reference Guide

Prime offers a large selection of applications-level subroutines and
PRIMOS operating system subroutines, which can be declared as external
in procedure/function declarations of a Pascal program, then referenced
from any point within the program. These routines are described in the
Subroutines Reference Guide. (See also Chapter 9 of this guide.)

Source Level Debugger Guide

When you specify the -DEBU3 option at compile time, you can generate
code that can be used to debug your program with Prime's debugger
utility, EBG. For complete information, consult the Source Level
Debugger Guide.

1 - 5 S e c o n d E d i t i o n

DOC4303-191

INTERFACE TO OTHER LAN3UAGE5

Since all Prime high-level languages are alike at the object-code
level, and since all use the same calling conventions, object modules
produced by the Pascal compiler can reference and be referenced by
modules produced by the FORTRAN 77, FORTRAN IV, OOBQL, PL/I Subset G,
etc. compilers, provided that certain restrictions are observed:

• All I/O routines must be written in the same language. However,
Pascal I/O should be used if and only if the main program is
written in Pascal.

• There must be no conflict of data types for variables being
passed as arguments. For example, an INTEGER in Pascal should
be declared as FIXED BINARY (15) in PL/I-G. See Appendix B for a
description of Pascal data storage formats and Appendix D for
data type compatibility.

• Modules compiled in 64V or 321 mode cannot reference or be
referenced by modules compiled in R mode. Modules in 64V or 321
mode may reference each other if they are otherwise compatible.

Pascal program units can also reference PMA (Prime Macro Assembler)
routines, and vice versa. For information, see the Assembly Language
Programmer's Guide.

Appendix D offers guidelines for interfacing Pascal with other
languages.

S e c o n d E d i t i o n 1 - 6

PART II

Compiling, Loading, and
Executing Programs

Using the Pascal
Compiler

INTRODUCTION

Prime's Pascal compiler, like Prime's other high-level compilers, can
output an object (binary) file, a source listing file, error and
statistical information, and other useful messages and information.
Upon compilation, error messages are printed at the terminal as the
compiler encounters them. Your program is checked syntactically,
according to the rules of Prime Pascal. Prime extensions and
restrictions, which are listed in Appendix A, will be identified when
discussed in this chapter and throughout the book.

This chapter discusses:

• How to invoke the compiler

• How to specify options to the compiler

• The significances of various messages that are printed during
compilat ion

• F i l e n a m e c o n v e n t i o n s I j ^ q

• The meanings of compiler options

• How to specify switches to the compiler

• The meanings of compiler switches

2 - 1 S e c o n d E d i t i o n

DOC4303-191

INVOKING THE COMPILER

The Pascal compiler is invoked from PRIMOS command level with the
PASCAL command:

PASCAL pathname [-option 1] [-option 2] ... [-option n]

pathname is the pathname of the Pascal source program to be compiled.

options are the names of various compiler functions, which you can
invoke on the command line to provide valuable information and input
while you compile, load, and execute your program. Every option name
must begin with a hyphen. For example:

PASCAL TEST -RANGE -LISTING

Given this command, the compiler will check for out-of-bounds values of
array subscripts and generate a source listing file for the program
TEST.

COMPILER ERROR MESSAGES

If the compiler finds no syntax errors in your program's code, it will
tell you there are no errors after it has successfully compiled the
program.

For example:

OK, PASCAL TEST
[PASCAL Rev. 19.1]
0000 ERRORS (PASCAL-REV 19.1)

However, for every error encountered in the program, an error message
will automatically be printed at the terminal and in the source listing
if a listing is being generated. The general format of an error
message is:

1 ine -number 1 ine -o f -code

ERROR xxx SEVERITY y BEGINNING ON LINE line-number
explanation

line-number The number of the line where the error occurred

1ine-of-code The erroneous line of code

x x x T h e e r r o r c o d e n u m b e r

y S e v e r i t y c o d e n u m b e r

explanation Description of the error and possible remedies

S e c o n d E d i t i o n 2 - 2

PASCAL OOMPILER

The circumflex (or arrow) that appears just above the error message |
points to the actual erroneous line of code. The following is an
example of an error message:

OK, PASCAL TEST.PASCAL
[PASCAL Rev. 19.1]

1 4 E N D { m a i n p r o g r a m } |/\

ERROR 31 SEVERITY 3 BEGINNING ON LINE 14
Missing dot at program end.

When compilation is complete and all the error messages have been
listed on the terminal, the compiler tells you how many errors were
encountered and the maximum severity. For example:

0013 ERRORS (PASCAL-REV. 19.1)
MAXIMUM SEVERITY IS 3

The significance of the severity code is:

S e v e r i t y D e s c r i p t i o n

1 W a r n i n g

2 E r r o r t h a t t h e c o m p i l e r h a s a t t e m p t e d t o
cor rec t

Uncorrected error (prevents optimization,
code generation, and therefore successful
compilation)

Error that immediately halts compilation

A severity 1 or 2 error will not prevent execution of your program, but
the output may be unpredictable.

Error Messages Involving %INCLUDE Files

A %INCLUDE file is a Prime extension. It is a file that is inserted
into the main program after the % INCLUDE statement. The % INCLUDE
statement is followed by the name of the file to be included. The
format is:

% INCLUDE ' filename';

% INCLUDE files can hold any legal Pascal code — declarations as well
as executable statements. The files could, for example, contain long
lists of variable declarations. (For more information on %INCLUDE
files, see Chapter 5.)

2 - 3 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

If you compile a program that inserts a % INCLUDE file, and there are
compile-time errors in that file, a special type of error message
format is printed at the terminal:

<line-number> 1ine-of-code

ERROR xxx SEVERITY y BEGINNING ON LINE line-number IN FILE 'filename'
explanat ion

line-number The number of the line in the .INCLUDE file where
the error occurred. (Lines of code in .INCLUDE
files are numbered separately, and the numbers are
enclosed in angle brackets in the listing file.)

line-of-code The actual erroneous line of code in the % INCLUDE
fi l e .

x x x T h e e r r o r c o d e n u m b e r .

y S e v e r i t y c o d e n u m b e r .
1 filename' The name of the % INCLUDE file.

explanation Description of the error and possible remedies.

The caret points to the erroneous line of code.

Here is an example of a % INCLUDE file error message:

<23> VAR a : integer;
A.

ERROR 2 SEVERITY 3 BEGINNING ON LINE 23 IN FILE 'test-1'
This item in a variable definition list is
already defined in this block.

The compiler adds the number of errors from the % INCLUDE file to the
number of errors in the main program, and gives the total number of
errors at the end of compilation.

FILENAME OONVEMTIONS

When you compile a program with the PASCAL command, and there are no
severity 3 or 4 errors, the compiler creates an object (binary) file.
It also creates a source listing file if the -LISTING option is
specified on the command line. In order for you and the compiler to
identify and compile the source file and create the object and listing
files, the "suffix" conventions, which are described below, should be
used to name these files on Rev. 18 (or higher) systems.

Second Edit ion, Update 1 2-4

PASCAL COMPILER

The Suffix Filename Conventions

With the suffix method, files are easily identified and created
according to the type of suffix appended to the program name. The
source file has a .PASCAL suffix, the object file has a .BIN suffix,
and the listing file has a .LIST suffix. If your program is called
TEST, you should name the source file:

TEST. PASCAL

Upon compilation, the compiler creates an object file called TEST.BIN
and a source listing file called TEST.LIST. The compiler will put
these files in the directory to which you are attached.

When the file is loaded into memory for execution, Prime's loader, SEG, 2.8.0
creates an executable file called TEST. SEG. (For information on
loading and executing Pascal programs, see Chapter 3.)

When you compile your program called TEST. PASCAL, you do not have to
include the .PASCAL suffix. The command:

OK, PASCAL TEST

and the command:

OK, PASCAL TEST.PASCAL

will produce the same result.

For more information on the suffix filename conventions, see Chapter 3.

The Prefix Filename Conventions

If you do not have a Rev. 18 (or higher) system, or your installation
does not use the suffix method, you would use the old-style prefix
filename conventions. The prefix method identifies the object,
listing, and executable files with prefixes. If the source file is
named TEST, the compiler will create an object file called B_TEST and a
listing file called L_TEST.

When the program is loaded for execution, Prime's loader, SEG, creates
an executable file, which you would have named #TEST, for example. The
prefix method is less efficient than the suffix method because you, not
SEG, name the executable file. (For more information on loading and
executing programs, see Chapter 3.)
If you are using the prefix method and your source file is called TEST,
compile it by simply issuing the command:

OK, PASCAL TEST

For more information on the prefix filename conventions, see Chapter 3.

2 - 5 S e c o n d E d i t i o n

DOC4303-191

COMPILER OPTIONS

Prime's Pascal compiler offers several compiler functions, or options,
that can provide useful information while you compile, load, and
execute your program. For instance, you can debug your program with
Prime's source level debugger, EBG, by specifying the -DEBUG option.
The -XREF option provides a list of all your program's variables and
the number of every line on which each variable is referenced.

Options are invoked on the PASCAL command line and may be given in any
order. For example:

PASCAL TEST -DEBUG -XREF

PASCAL TEST -XREF -DEBUG

Most compiler options come in pairs. For each option, there is an
option having the opposite effect. Most option pairs direct the
compiler to do or not do some action. A few present a choice between
two actions. One member of each pair is always the default. For
example, consider this pair of options:

-DEBUG
-NODEBU_

-NODEBUG is the default. Unless -DEBUG is specified, code for the
source level debugger will not be generated.

Note

Pascal compiler option defaults are set in a special "driver
program" on the Master Disk. At some point, the users at your
installation might want to change a default. Your System
Administrator can change defaults by following the procedure in
the System Administrator's Guide. It is recommended that only
your System Administrator have access to the driver files on
the Master Disk.

Table 2-1 lists options that are commonly used and not commonly used.
For each pair of options in Table 2-1, the Prime-supplied default is
underlined. Some options have an argument in addition to the option
specification. The argument follows the option and is not preceded fcy
a hyphen. For example:

-BINARY NO

A list of option pairs, along with detailed descriptions, follows Table
2-1.

S e c o n d E d i t i o n 2 - 6

PASCAL COMPILER

Table 2-1

Options Commonly Used and Not Commonly Used
(Defaults are underlined.)

Options Commonly Used Options Not Commonly Used

-BINARY [argument] -BIG and -NOBIG

-DEBUG and -NODEBUG -64V and -321

-EXPLIST and -NOEXPLIST

-ERRTTY and -NOERRTTY -EXTERNAL and -NOEXTERNAL

-LISTING [argument] -FRN and -NOFRN

-MAP and -N0__MAP -INPUT pathname

-OFFSET and -NOOFFSET

-OPTIMIZE, -OFT1, -N0OPT1, -PRODUCTION and -NOPRODUCTION
-OPT3, -N0OPT3, and
-NOOPTIMIZE

-RANGE and -NORANGE -SILENT and -NOSILENT

-UPCASE -SOURCE pathname

-XREF and -NOXREF -STANDARD and -NOSTANDARD

-STATISTICS and -NOSTATISTICS

19.2

2-7 Second Edition, Update 1

UPD4303-192

^ -BIG and -NOBIG

-BIG and -NCBIG determine the type of code generated for references to
ARRAY or RECORD formal variable parameters in a subprogram.

With -BIG, an ARRAY or RECORD formal variable parameter can become
associated with any ARRAY or RECORD, even if the ARRAY or REOORD
crosses a segment boundary.

With -NOBIG, an ARRAY or REOORD formal variable parameter can be
associated only with an ARRAY or RECORD that does not cross a segment
boundary.

See ARRAY or REOORD Type Variable Parameters in Chapter 9 for details.

^ -BINARY [argument]

The -BINARY option generates an object (binary) file. If this option
is not given, -BINARY YES will be assumed. The argument may be:

pathname Object code will be written to the file pathname.

Y E S O b j e c t c o d e w i l l b e w r i t t e n t o t h e fi l e n a m e d
program.BIN, or B__program, in the user's UFD, where
program is the name of the source file. (This is the
d e f a u l t .)

NO No object file will be created. Specified when only a
syntax check or listing is desired.

^ -DEBUS and -NODEBUS

The -DEBUG option generates code for Prime's source level debugger.
With -DEBUG, the object file is modified so that it will run under the
debugger. Execution time increases, and the code generated will not be
optimized.

-NODEBUG, the default, causes no debugger code to be generated.

See the Source Level Debugger Guide for information about debugging
programs.

^ -ERRTTY and -NOERRTTY

The -ERRTTY option prints error messages at the user's terminal.
-NOERRTTY suppresses this function.

Second Edit ion, Update 1 2-8

PASCAL COMPILER

▶ -EXPLIST and -NOEXPLIST

-EXPLIST inserts a pseudo-assembly code listing into the source
listing. Each statement in the source will be followed by the
pseudo-PMA (Prime Macro Assembler) statements into which it was
compiled. For information on PMA, see the Assembly Language
Programmer's Guide.

-NOEXPLIST causes no assembler statements to be printed to the listing
fi l e .

^ -EXTERNAL and -NOEXTERNAL

-EXTERNAL creates an object file that can be linked to from other
procedures and functions. This option is similar to the $E+ compiler
switch, except that -EXTERNAL cannot be suppressed or resumed during
compilation. ($E+ switch is discussed at the end of this chapter.)

-NOEXTERNAL causes no external procedure definitions to be generated.

^ -FRN and -NOFRN
These options control generation of floating-point round instructions.

-FRN causes an FRN instruction to be generated before every FST
(floating store) instruction in the code produced by the Pascal
compiler. For explanations of these instructions, see the Assembly
Language Programmer's Guide. The FRN option improves the accuracy of
single-precision, floating-point calculations at some runtime
performance expense.

-NOFRN will cause no FRN instructions to be generated before FSTs.

▶ -INPUT pathname

The -INPUT option, which is identical to the -SOURCE option, is
obsolete and not useful. -INHJT designates the source file pathname to
be compiled:

PASCAL -INPUT pathname

It is not useful because it produces the same results as:

PASCAL pathname

pathname must not be designated more than once on the command line.

2 - 9 S e c o n d E d i t i o n

DOC4303-191

^ -LISTING [argument]

The -LISTING option controls creation of the source listing file. The
argument may be:

pathname Listing will be written to the file pathname.

YES Listing will be written to the file named program.LIST,
or L_program, in the user's UFD, where program is the
name of the source file.

TTY The listing will be printed at the user terminal.

SPOOL The listing will be spooled directly to the line
printer. Default SPOOL arguments are in effect.

NO No listing file will be generated.

When no -LISTIN3 option is given, -LISTING NO will be the default.
When -LISTING is given with no argument, -LISTING YES will be the
default.

^ -MAP and -N0_MAP
-MAP is the default and makes no user-visible changes to the listing
file. The "map" of variables is included in the listing file. If -MAP

18.3 is specified, a listing file will be generated.

The -NO__MAP option generates a listing file that includes only the
program and error messages without a "map" of variables and their
locations in memory.

^ -OFFSET and -NOOFFSET

-OFFSET appends an offset map to the source listing. For each
statement in the source program, the offset map gives the hexadecimal
offset in the object file of the first machine instruction generated
for that statement.

-NOOFFSET causes no offset map to be created.

S e c o n d E d i t i o n 2 - 1 0

PASCAL COMPILER

^ -OPTIMIZE, -OPT1, -N0OPT1, -OPT3, -N0OPT3, and -NOOPTIMIZE | 19.2

These options control the optimization phase of the compiler.

-OPTIMIZE, the default, will cause the object code to be optimized.
Optimized code runs more efficiently than nonoptimized code, but takes
somewhat longer to compile.

The -OFTl option optimizes less code and generates less efficient code
than -OPTIMIZE, but compilation time is faster than -OPTIMIZE. -NOOPT1 I 19.2
i s t h e d e f a u l t . '

The -OPT3 option optimizes more code and generates more efficient code
than -OPTIMIZE, but compilation time is slower than -OPTIMIZE. -N00FT3 I 19.2
i s t h e d e f a u l t . '

When -NOOPTIMIZE is invoked, optimization does not occur. Execution
time is slowest, and compile time is fastest.

^ -PRODUCTION and -NOPRODUCTION

-PRODUCTION produces alternative option-controlling code for the
debugger.

-PRODUCTION is similar to DEBUG, except that the code generated will
not permit insertion of statement breakpoints. Execution time is not
a ffec ted.

-NOPRODUCTION will cause no production-type code to be generated.

^ -RANGE and -NORANGE

-RANGE checks for out-of-bounds values of array subscripts and
character substring indexes. Error-checking code is inserted into the
object file. If an array subscript or character substring index takes
on a value outside the range specified when the referenced data item
was declared, a runtime error will be generated. Range checking
decreases the efficiency of the generated code.

With -NORANGE, out-of-bounds values will not be detected. The program
will be more vulnerable to errors, but will execute more quickly.

2 - 11 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

^ -SILENT and -NOSILENT

-SILENT suppresses severity 1 error messages. Severity 1 error
messages will not be printed at the terminal and will be omitted from
any listing file.

-NOSILENT causes severity 1 error messages to be retained.

▶ -SOURCE pathname

The -SOURCE option, which is identical to the -INPUT option, is
obsolete and not useful. -SOURCE designates the source file pathname
to be compiled:

PASCAL -SOURCE pathname

It is not useful because it produces the same results as:

PASCAL pathname

pathname must not be designated more than once on the command line.

^ -STANDARD and -NOSTANDARD

The -STANDARD option generates a severity 1 error message when your
code's syntax is non-ANSI standard Pascal. -NOSTANDARD does not cause
a severity 1 error to be generated.

^ -STATISTICS and -NOSTATISTICS

The -STATISTICS option lists compilation statistics at the terminal
after each phase of compilation. For each phase the list contains:

DISK Number of reads and writes during the phase, excluding
those needed to obtain the source file

SECONDS Elapsed real time

SPACE Internal buffer space used for symbol table, in 16K byte
un i t s

PAGING Disk I/O time used

CPU CPU time used in seconds, followed by the clock time
when the phase was completed

-NOSTATISTICS causes no statistics to be printed.

Second Edition, Update 1 2-12

PASCAL COMPILER

▶ -UPCASE

The -UPCASE option causes the compiler to map lowercase variables to
uppercase. With -UPCASE, the compiler does not distinguish between
lowercase variables and uppercase variables, except within character
s t r ings .

^ -XREF and -NOXREF

The -XREF option appends a cross-reference to the source listing. A
cross-reference lists, for every variable, the number of every line on
which the variable was referenced.

-NOXREF causes no cross-reference listing to be generated.

▶ -64V and -321

These determine the addressing mode to be used in the object code.
-64V is a segmented virtual addressing mode for 16-bit machines. -321
is a segmented virtual mode, which takes maximum advantage of the
32-bit architecture of Prime's more advanced models (P450 and up).

COMPILER OPTION ABBREVIATIONS

Most compiler options have abbreviations that are accepted by the
compiler. For example, instead of typing -LISTING on the command line,
you could simply type -L. A list of Prime's recommended abbreviations,
along with a summary of options in straight (nonpaired) alphabetical
order, is given in Table 2-2.

2 ~ 1 3 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

Table 2-2

Summary of Compiler Options and Abbreviations
(Defaults are underlined.)

Option

-BIG

-BINARY

-DEBU3

-ERRTTY

-EXPLIST

-EXTERNAL

-FRN

-INPUT

-LISTING

-MAP

Abbreviat ion

19.2

-NOBIG

-NODEBUG

-NOERRTTY

-NOFRN

-NO_MAP

-NOOFFSET

-NOOPTIMIZE

-N0OPT1

-N0OPT3

-BIG

-B

-DE

-ERRT

-EXP

-EXT

-FRN

- I

- L

-MA

-NOB

-NOD

-NDERRT

-NOFRN

-NOM

-N0OF

-N0OP

-N0OPT1

-N0OPT3

Sign ificance

Generate boundary-spanning code

Create object file

Generate debugger code

Print error messages at terminal

Generate an expanded source
l i s t i n g

Genera te ex terna l p rocedure
d e fi n i t i o n s

Generate float ing-point round
ins t ruc t ions

Designate source file

Create source listing

Print listing file with map

Don't generate boundary-spanning
code

Don't generate code for debugger

Don't print error messages at
terminal

Don't generate FRN instruction

Don't include a map in listing
fi l e

Don't append an offset map to
source listing

Don't optimize object code

Don't optimize less code

Don't optimize more code

Second Edition, Update 1 2-14

PASCAL COMPILER

Table 2-2 (continued)
Summary of Compiler Options and Abbreviations

Option Abbreviat ion Significance

-NOPRODUCTION -NOP Don't generate production code

-NORANGE -NOR Don't check subscript ranges

-NOSILENT -NOSI Don't suppress severity 1 error
messages

-NOSTANDARD -NOSTAN Don't flag nonstandard Pascal
syntax

-NOSTATISTICS -NOSTAT Don't print compiler statistics

-NOXREF -NOX Don't generate cross-reference

-OFFSET -OF Append offset map to source
l i s t i n g

-OPT1 -OFT1 Optimize less object code

-OPTIMIZE -OP Optimize object code

-OPT3 -OPT3 Optimize more object code

-PRODUCTION -P Generate production code

-RANGE -R Generate code to check subscript
ranges

-SILENT -SI Suppress severi ty 1 error
messages

-SOURCE -s Designate source file

-STANDARD -STAN Flag nonstandard Pascal syntax

-STATISTICS -STAT Print compiler statistics

-UPCASE -UP Map lowercase variables to
uppercase

-XREF -X Generate cross-reference

-321 -3 Produce 321 mode code

-64V -6 Produce 64V mode code

19.1

19.1

18.2

2-15 Second Edition

DOC4303-191

18.3

18.3

COMPILER SWITCHES

Some compiler functions can be controlled through the use of compiler
switches specified within the source program.

A compiler switch is written as a comment — text enclosed in the
comment delimiters (* *) or {} or /* */ -- with a dollar sign as the
first character. Immediately following the $, a letter designates the
specific switch. A + or - sign thereafter indicates the turning on or
off of the switch. This format up to and including the + or - sign
must be followed strictly, or the switch will be ignored by the
compiler. Any note, if desired, may be written after the + or - sign
and before the final comment delimiter. Examples:

{$L+}

{$PH-}

/*$A - Compiler will ignore this switch because space precedes -.*/

{$A- Compiler recognizes this switch.}

(*$E+, $L- Compiler will only recognize the first switch.*)

(*$E+*) (*$L- Compiler will recognize both E+ and L- switches.*)

Multiple switches, written as separate comments, can be used to control
the compilation of a specific part of a program.

The available compiler switches and their meanings are as follows:

S w i t c h M e a n i n g

A Controls the generation of code
used to perform array bounds
c h e c k i n g a t r u n t i m e . A -
suppresses the generation; A+
resumes it.

L Controls the printing of source
lines to the listing file at
compile time if a listing file
was requested. L- suppresses
the printing of source lines
(source text); L+ resumes it,
assuming that a listing file
was requested.

Defau l t

A-

L+

Second Edition 2-16

PASCAL OOMPILER

S w i t c h M e a n i n g D e f a u l t

E C o n t r o l s t h e d e fi n i t i o n o f E -
globally defined procedures and
variables (also called common
b locks) . Pasca l p rocedu res /
funct ions can be separately
compiled by including {$E+} at
the beginning of the module. (A
detailed discussion is presented
in Chapter 9.)

P C o n t r o l s p a g e b r e a k s (o r p a g e P -
"ejects") in the l ist ing file.
{$P+} causes the printing of
l ines in the l is t ing fi le to
stop on the current page (at the
line just above {$P+}) and to
resume printing at the top of
the next page. The default P-
causes continuous printing of
lines from page to page.

18.3

2 - 1 7 S e c o n d E d i t i o n

Loading and
Executing Programs

The PRIMOS SEG utility, and SEG's subprocessor LOAD, load and execute
all Pascal programs. This chapter provides you with enough knowledge
to begin loading and executing programs. Loading is described in more
detail in the Prime User's Guide. For extended loading features, as
well as a complete description of all SEG commands, including those for
advanced system-level programming, see the LOAD and SEG Reference Guide
and its updates.

LOADING PROGRAMS

When a Pascal program is loaded for execution, the following files and
libraries should be loaded in this order with the SEG utility:

1. The program's object (binary) file, which is created upon
compilation. (See Chapter 2 for information on compiling
Pascal code.)

2. The object files of separately compiled subprograms, if any.
The subprograms should be loaded in the order in which they are
called by the main program.

3. The Pascal library.

4. Other Prime libraries, if needed.

5. The standard system libraries.

3 - 1 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

When all of these items are loaded and all external calls are resolved,
SEG returns a LOAD COMPLETE message. Your program is then ready for
execution.

Here is a simple example of loading a Pascal program called
TEST.PASCAL. User input is underlined:

OK, SEG -LOAD Enter SEG's LOAD subprocessor.
[SEG rev 19.1]
$ LOAD TEST.BIN Load the main program's object file.
$ LIBRARY PASLIB Load the Pascal library.
$ LIBRARY Load the standard system l ibraries.
LOAD COMPLETE Loader indicates load is complete.
$ quit Save the executable file and return to PRIMOS.
OK7

In the above example, SEG's LOAD and LIBRARY commands load the main
program and the libraries. The QUIT command saves your executable
file, or SEG file, and returns you to PRIMOS command level.

The Procedure to Be Followed

The SEG loader is invoked with the SEG command. Depending on how new
your compiler is and what your system's restrictions are, you would
either use the new, more efficient (Rev. 18 and higher) suffix
conventions, or the old-style prefix conventions.

If you are using the suffix method — that is, if your source filename
has a .PASCAL suffix as explained in Chapter 2 — use the -LOAD option
on the command line to enter LOAD'S subprocessor. For example:

SEG -LOAD

Pre-Rev. 18 systems do not support the -LOAD option.

With the suffix method, SEG automatically generates a suffixed
executable file. For example, if your object file is called TEST.BIN,
SEG produces an executable file named TEST.SEG. The -LOAD option
automatically enters the LOAD subprocessor and sets up an executable
file. This eliminates a step in the load procedure.

Note

The prefix loading method is still available for use on all
systems. If you do not have a Rev. 18 (or higher) compiler, or
your installation does not use the suffix method, your source
filename need not have a .PASCAL suffix. The procedure for
loading programs with the prefix method is listed later in this
chapter.

Second Edit ion, Update 1 3-2

LOADING AND EXECUTING PROGRAMS

The Suffix Loading Procedure: If you use the suffix method, follow
this procedure to load programs:

1. Invoke the SEG loader with the SEG -LOAD command. You will
enter the LOAD subprocessor, and LOAD'S $ prompt symbol will
appear. (SEG's prompt symbol is #, but it does not appear when
you use the -LOAD option on the command line.)

2. Load the program's object file with the LOAD command
(abbreviated LO). For example:

$ LO TEST

It is not necessary, though it is acceptable, to load TEST.BIN
instead of TEST.

3. Load the object files of any separately compiled subprograms
with the LOAD command in the order in which they are called by
the main program.

4. Load the Pascal library, PASLIB, with the subprocessor's
LIBRARY command (abbreviated LI):

$ LI PASLIB

5. Load other Prime libraries, if needed, such as the sort
library, VSRTLI, or the applications library, VAPFLB. For
example:

$ LI library-name

6. Load the standard system libraries:

$LI
7. At this point, you should receive a LOAD COMPLETE message. If

you do not receive the message, use the MAP 3 or MAP 6 command
to identify the modules that were not loaded, and load them.
If the unidentified module is caused ty a misspelled subprogram
name, repeat the load. In the unlikely event that some other
SEG error messages appear, see the LOAD and SBG Reference
Guide.

8. The QUIT command (abbreviated Q) saves the executable file,
exits the SEG utility, and returns you to PRIMDS command level.
Use QUIT if you do not want to execute the program immediately
from inside the subprocessor. (Execution is discussed later in
this chapter.)

18.0

3 - 3 S e c o n d E d i t i o n

DOC4303-191

Here is an example of a user's dialog with the SEG utility during a
load procedure using the suffix method:

OK, SBG -LOAD Enter SEG's LOAD subprocessor.
[SEG rev 19.1]
$ LO TEST Load the main program's object file.
$ LO subprogram-name Load separately compiled subprograms.
$ LI PASLIB Load the Pascal library.
$ LI library-name Load other Prime libraries, if needed.
$ L I L o a d t h e s t a n d a r d s y s t e m l i b r a r i e s .
LOAD COMPLEX Loader indicates load is complete.
$ QUIT Save executable file and return to PRIMOS.

1 8 . 0 O K ,

After your load is complete, you should have the following suffixed
files in your directory:

• TEST. PASCAL (the source file)

• TEST.BIN (the object file)

• TEST.SEG (the executable file)

• TEST.LIST (the source listing file, if you created one with the
-LISTING option at compile time)

The Prefix Loading Procedure: If you do not have a Rev. 18 (or higher)
system, or if you do not use the suffix method, you would use the
old-style prefix method. You cannot use the -LOAD option on a
pre-Rev. 18 system, and the source filename need not have a suffix. A
typical source filename would be TEST, not TEST.PASCAL.

With the prefix method, filenames are identified ty the attached
prefixes. For example, the object file is called B__TEST, not TEST.BIN,
the listing file is called I__TEST, not TEST.LIST, and the executable
file is called #TEST, not TEST. SEG. You, not SEG, enter the LOAD
subprocessor and set up an executable file by issuing the LOAD command
followed by the name of the executable file, #TEST. For example:

OK, _____
[SEG rev 17.5]
LO #TEST
$

Note that the SEG prompt # appears without the -LOAD option on the
command line.

S e c o n d E d i t i o n 3 - 4

LOADING AND EXECUTING PROGRAMS

After you have entered the LOAD subprocessor and set up an executable
file, and the subprocessor's $ prompt appears, you must load the object
file, the object files of separately compiled subprograms, the Pascal
library, and the standard system libraries. For example:

$ LO B_TEST
$ LO B_subprogram-name
$ LI PASLIB
$ LI

A step-by-step procedure follows:

1. Invoke the SEG utility with the SEG command. SEG's # prompt
will appear.

2. Enter SEG's LOAD subprocessor and set up an executable file
with the LOAD command (abbreviated LO) followed by the program
name with a # prefix:

LO #TEST

3. Load the main program's object file (B_TEST) after the
subprocessor's $ prompt appears. For example:

$ LO B_TEST

4. Load the object files of any separately compiled subprograms
(B_subprogram-name) in the order in which they are called by
the main program.

5. Load the Pascal library, PASLIB, with the subprocessor's
LIBRARY command (abbreviated LI):

$ LI PASLIB

6. Load other Prime libraries, if needed, such as the sort
library, VSRTLI, or the applications library, VAPPLB. For
example:

$ LI library-name

7. Load the standard system libraries:

$ LI

3 - 5 S e c o n d E d i t i o n

DOC4303-191

8. At this point, you should receive a LOAD COMPLETE message. If
you do not receive the message, use the MAP 3 or MAP 6 command
to identify the modules that were not loaded, and load them.
If the unidentified module is caused by a misspelled subprogram
name, repeat the load. In the unlikely event that some other
SEG error messages appear, see the LOAD and SBG Reference
Guide.

9. The QUIT command (abbreviated Q) saves the executable file,
exits the SEG utility, and returns you to PRIMOS command level.
Use QUIT if you do not want to execute the program immediately
from inside the subprocessor. (Execution is discussed later in
this chapter.)

Here is an example of a user's dialog with the SEG utility during a
load procedure using the prefix method:

O K , S E G E n t e r t h e S E G u t i l i t y.
[SEG rev 17.5]
• LO #TEST Enter LOAD and set up executable file.
$ LO B__TEST Load main program's object file.
$ LO B_subprogram-name Load separately compiled subprograms.
$ LI PASLIB Load Pascal library.
$ LI library-name Load other Prime libraries, as needed.
$ l i L o a d t h e s t a n d a r d s y s t e m l i b r a r i e s .
LOAD COMPLETE Loader indicates load is complete.
$ quit Save executable file and return to PRIMOS.
OK,

After the load is complete, you should have the following files in your
directory:

• TEST (the source file)

• B_TEST (the object file)

• #TEST (the executable file)

• I__TEST (the source listing file, if you created one with the
-LISTING option at compile time)

Table 3-1 provides a comparison and quick reference of suffix and
prefix filenames.

S e c o n d E d i t i o n 3 - 6

LOADING AND EXECUTING PROGRAMS

Table 3-1
Suffix and Prefix Filename Conventions

F i l e Suffixed Name Prefixed Name

Source file filename. PASCAL filename

Object file filename.BIN B_filename

Subprogram subpr ogr am-name. B IN B_subpr ogr am-name
Executable SEG fi l e filename. SEG #filename

Source listing fi l e filename. LIST L__filename 18.0

EXECUTING PROGRAMS

Once your program is loaded and you have returned to the PRIMOS command
level, execute your program with the SEG command:

SEG filename

filename is the name of your program's executable file. If your
program was loaded with the suffix method, and your executable file is
called TEST.SEG, issue the command:

SBG TEST

If your program was loaded with the prefix method, and your executable
file is called #TEST, issue the command:

SEG #TEST

SEG loads the executable file into segmented memory and begins
execution of the program.

3-7 Second Edition

DOC4303-191

Executing from within the Subprocessor

A shortcut to saving and executing a loaded program is available.
Immediately after receiving the LOAD COMPLETE message, enter the
subprocessor's EXECUTE command (abbreviated EX). This command will
then save the loaded program and start executing it. Upon completion
of execution, control returns to PRIMOS command level. For example:

LOAD COMPLETE
$ EXECUTE
OK,

Compiling, Loading, and Executing with Command Files

You can save time in compiling, loading, and executing programs by
creating a command file or CPL file that will automatically compile,
load, and execute a program for you. For instructions on how to create
command and CPL files, see the Prime User's Guide and the CPL User's
Guide.

S e c o n d E d i t i o n 3 - 8

PART III

Prime Pascal Language
Reference

Pascal Language
Elements

This chapter, and all the other chapters in Part III, serve as a
reference to the Pascal language — standard Pascal as well as Prime
extensions and restrictions. This language reference is not intended
to be a Pascal tutorial. It does not teach you Pascal.

You are expected to be familiar with Pascal, but not necessarily with
Prime computers. If you do not know Pascal, consult a commercially
available text, such as the ones listed in Chapter 1.

Prime extensions and restrictions to standard Pascal are clearly
identified throughout the book. For a summary of Prime extensions and
restrictions to Pascal, along with references to where they are
discussed in the book, see Appendix A.

4 - 1 S e c o n d E d i t i o n

DOC4303-191

DEFINITIONS

The terms defined below are used repeatedly throughout the book,
other terms are defined in later chapters.

Many

Term

Program

Program Unit

Subprogram

Heading

Object

Block

Global

Defini t ion

A main program consists of a heading and a block
and ends with a period. (See Chapter 5.)

A program unit can be a main program, a procedure,
or a function.

A subprogram is either a procedure or a function.
It consists of a heading and a block and ends with
a semicolon. (See Chapter 9.)

A heading gives a program unit a name and lists the
program's parameters. (See Chapters 5 and 9.)

An object is an identifier used in a program unit.
(Identifiers are defined later in this chapter.)

A block is the body of a program unit. It consists
of a sequence of declarations (declaration part)
describing data objects to be used in the program
unit and a sequence of statements (executable part)
describing actions to be performed on these
objects. (See Chapters 5 and 9.)

A program unit can have up to 64 levels of nesting
of blocks within blocks. If block B is defined
within block A, then B is called the inner block or
inner level, and A is called the outer block or
outer level. If block C is defined within block B,
then B becomes an outer block to inner block C, but
B is still an inner block to block A. The
outermost block of a program is the program block
itself. (See Figure 4-1.)

The data objects, such as variables, declared in
the outer block of a program unit are accessible at
all inner levels of the program unit and are termed
global. If block B is defined in block A and block
C is defined in block B, then an object declared in
A is said to be global to B and C, and an object
declared in B is said to be global to C. (See
Figure 4-1.)

Objects declared at the program level (the
outermost level) are global to all inner levels and
can be referenced throughout the entire program.

Second Edition 4-2

PASCAL LANGUAGE ELEMENTS

BLOCK A
(Variables declared here are
global to Blocks A, B, and C.)

BLOCK B
(Variables declared here are local
to Block B and global to Block C.)

BLOCK C
(Variables declared here
are local to Block C.)

Local and Global Variables in
Inner and Outer Blocks

Figure 4^-1

4-3 Second Edition

DOC4303-191

Local

Scope

Actual
Parameter

Formal
Parameter

If an object is declared in a block, it is
available or significant only within that block,
and is said to be local to that block. However, if
block B is within block A, then objects local to A
are global to B and have significance in both A and
B. (See Figure 4-1.)

The block in which an object is declared defines
the scope of that object. In other words, the
scope of an identifier or label is the block in
which the declaration or definition of the
identifier or label is valid.

An actual parameter is a variable or expression
passed to a subprogram. Actual parameters appear
in the parameter list of a procedure or function
call (procedure statement or a function designator)
within a block. (See Chapter 9.)

A formal parameter is a variable appearing in the
parameter list of a subprogram heading. When the
subprogram is invoked, the value of each actual
parameter is passed to a corresponding formal
parameter. A formal parameter can also be called
"dummy" parameter or a "placeholder". (See Chapter
9.)

PASCAL CHARACTER SET

The Prime Pascal ANSI, ASCII 7-bit character set consists of:

• Twenty-six uppercase and 26 lowercase letters of the English
alphabet (A to Z, a to z).

• Ten digits (0 - 9).

• Twenty-one punctuation symbols. These symbols are used by
themselves and in certain combinations to represent operators
and delimit textual elements as described in Table 4-1.

| Appendix C lists the character set.

Second Edition 4-4

PASCAL LANGUAGE ELEMENTS

Symbol

/

<

>

[]

0

<>

Table 4-1
Pascal Punctuation Symbols

Descr ipt ion

Addi t ion
I d e n t i t y
Set union
STRING concatenation (Prime extension)

Subtract ion
Sign- invers ion
Set difference

M u l t i p l i c a t i o n
Set intersection

Division (real)

Equal to
Set equality
Type identifier and type separator
Constant identifier and constant

separator

Less than

Greater than

Subscript list or set constructor
de l im i te rs

Decimal point
Record selector
Program terminator

Parameter or identifier separator

Variable name and type separator
Label and statement separator

Statement separator
Record field separator
Declaration separator

File or pointer variable indicator

Parameter l ist, identifier l ist,
or expression delimiters

Not equal to
Set inequality

| 19.2

4-5 Second Edition, Update 1

UPD4303-192

Symbol

<=

>=

{ }

/* V
(* *)

Table 4-1 (continued)
Pascal Punctuation Symbols

Descr ipt ion

Less than or equal to
Set inclusion ("is contained in)

Greater than or equal to
Set inclusion ("contains")

Assignment Operator

Subrange Specifier

Comment delimiters

Comment delimiters (Prime extension)

Comment delimiters

Character-string delimiter
(apostrophe)

Bit Integer AND operator (Prime extension)

Bit Integer OR operator (Prime extension)

Second Edition, Update 1 4-6

PASCAL LANGUAGE ELEMENTS

KEYWORDS

Keywords are special symbols with fixed meanings and purposes, which
cannot be redefined. They can be used only as specified in the syntax
for a Pascal program unit. Keywords may be written in lowercase
letters, uppercase letters, or any combination of them. Lowercase
letters will be interpreted the same as their uppercase counterparts.
Table 4-2 lists all the available keywords.

Table 4-2
Pascal Keywords

AND
ARRAY
BEGIN
CASE
ODNST
DIV
DO
DOWNTO
ELSE
END
FILE
FOR

FUNCTION
GOTO
I F
IN
LABEL
MDD
NIL
NOT
OF
OR
OTHERWISE*
PACKED

Prime extension keyword

PROCEDURE
FROGRAM
REOORD
REPEAT
SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH
%INCLUDE*

IDENTIFIERS

Identifiers are names used in Pascal source program units to denote
programs, constants, types, variables, procedures, or functions.
Identifiers may be written in either lowercase or uppercase letters or
any combination of them. The compiler will convert all lowercase
letters to their uppercase counterpart for the purpose of identifier
recognition.
A Pascal identifier can be a user-defined identifier or a standard
i d e n t i fi e r.

4-7 Second Edition

19.1 |

DOC4303-191

User-defined Identifiers

User-defined identifiers are names supplied ty the user. These names
cannot be keywords.

A user-defined identifier must begin with a letter or a dollar sign,
which may be followed by any combination of letters, digits,
underscores, and dollar signs. It may contain up to 32 significant
characters in its spelling. An identifier with more than 32 characters
will result in a severity 1 error at compile time. This is a Prime
rest r ic t ion.

Standard Identifiers

Standard identifiers are names with predefined meanings and purposes,
such as standard function names like SQR and ORD. If necessary, you
may globally or locally redefine any standard identifier for another
purpose. However, if an identifier is redefined, it cannot be used for
its original purpose within the scope of that redefinition. For
example, you may create a variable named ABS. Then, however, you would
no longer be able to use the standard absolute value function ABS in
the block containing the declaration of that variable. Table 4-3 lists
all the available standard identifiers. Detailed descriptions are
contained in appropriate chapters of this book.

NUMERIC CONSTANTS

Pascal has four forms of numeric constants — integer, longinteger,
real, and longreal.

An integer or a longinteger is a whole number with an optional sign.
It is either a constant of INTEGER or LONGINTEGER type respectively or
a constant of a subrange of INTEGER or LONGINTEGER type respectively.

19.1 A real or a longreal number has a fractional part. It is a constant of
REAL or LONGREAL type respectively.

The LONGINTEGER and LONGREAL data types are Prime extensions.
LONGINTEGER allows you to use 32-bit whole numbers. LCNGREAL allows
you to use 64-bit real numbers. (See Chapter 6.) IXNGPNTBGERS have
values in the range -2147483648..+2147483647.

S e c o n d E d i t i o n 4 - 8

PASCAL LANGUAGE ELEMENTS

Table 4-3
Standard Identifiers

Constants

FALSE TRUE MAXINT

Types

INTEGER
BOOLEAN

F i l e s

INPUT

Di rec t ives

FORWARD

Functions

ABS
ARCTAN
CHR
COS
EOF
EOLN

Procedures

CLOSE*
DISPOSE
GET
NEW

LOSIGINTEGER* REAL
C H A R T E X T

OUTPUT

LONGREAL*
STRING*

EXTERN*

EXP SIN
LN SQR
ODD SQRT
ORD SUCC
PRED TRUNC
ROUND

| 19.2

ROUND

PAGE RESET
PUT REWRITE
READ WRITE
READLN WRITELN

* Prime extension identifiers

4-9 Second Edition, Update 1

UHM303-192

There are two ways of expressing real and longreal numbers:

1. In decimal notation, the number is expressed by an optional
sign, a whole number part, a decimal point, and a fractional
part. There must be at least one digit on each side of the
decimal point.

2. In scientific notation, the number is represented by a value,
followed by the letter E or D, which is followed by an
exponent. The letter E is used if the number is REAL. The
letter D is used if the number is LONGREAL. The value consists
of an optional sign, one or more digits, and an optional
decimal point and fractional part. The exponent must be an
integer with an optional sign. The letter E or D is read as
"times 10 to the power of". This is a convenient way to
represent very large or very small numbers.

No comma may appear in a number. Examples:

Va l i d I n t e g e r / L o n g i n t e g e r I n v a l i d I n t e g e r

2 3 - 3 2 , 7 6 8 (N o c o m m a a l l o w e d)

-100

+40000 (longinteger)

Valid Real/Longreal Number

-0 .1

1E6 (1000000)

5E-8 (0.00000005)

-87.35E+15 (-87350000000000000)

-7.0E-6 (-0.000007)

2.1D01 (longreal)

1.234567 (longreal)

Invalid Real Number

.1 (Must be a digit to
the left of the decimal
po in t)

1. (Must be a digit to the
right of the decimal point)

-8.0E-6.3 (Only whole number
exponents allowed)

1,23413+20 (No comma allowed)

Second Edition, Update 1 4-10

PASCAL LANGUAGE ELEMENTS

CHARACTER-STRINGS

A character-string is a character or a sequence of characters enclosed
by apostrophes. Character-strings consisting of a single character are
CHAR type constants. Character-strings consisting of more than one
character are either STRING type constants or ARRAY [l..n] OF CHAR type
constants, where n is the number of characters in the string. The 19.2
STRING type is a Prime extension. (See Chapter 6.) To include an
apostrophe character in a string, double the apostrophe. Here are some
character string examples:

1 1 1 1

. 1

(single quote)

'THIS IS A STRING'

'Pascal '

'Don''t give up the ship.'

raCLARATIONS AND STATEMENTS

Declarations describe data objects to be executed in a program unit.
Statements perform expl ic i t act ions on the declared objects.
Declarations must precede statements in the program text. (See
Chapters 5 and 8 for detailed discussions.)

LINE FORMAT

The Pascal compiler ignores the formatting of source lines. A
declaration or statement may start anywhere on a line. More than one
declaration or statement may be written on a single line. However, a
keyword, an identifier, or a number cannot be divided between lines.

This guide uses formatting for legibility in program examples.

COMMENTS, BLANKS, AND ENDS OF LINES

Comments, blanks (except in character-strings), and ends of lines are
considered to be separators. Separators must not appear in
identifiers, keywords, or numbers. At least one separator must be
placed between identifiers, keywords, or numbers that are not separated
by one or more of the punctuation symbols given in Table 4-1. One or
more separators may occur anywhere in the program text except where it
is not recommended throughout the book.

4 - 11 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

A comment has the form:

{sequence of characters}

in which the characters may be any character except the right brace }
or the character sequences *) or */. In Pascal, comments may be placed
anywhere blanks are allowed. Comments are inserted as notes that
indicate the purpose of a program or a section of code. Also, comments
are used to enable or disable compiler switches. (See Chapter 2.)

On many terminals, the brace characters are not available, so Prime
Pascal also allows a comment to be delimited by the character pairs (*
) and / */. Delimiters {}, (* *), and /* */ can be interchanged.
Starting and ending comment delimiters need not have the same form.
The delimiters /* */ are a Prime extension.

Second Edition, Update 1 4-12

Pascal Program
Structure

A standard Pascal program consists of a heading and a block and ends
with a period. The block may contain up to six different kinds of
declarations and a sequence of executable statements enclosed within
the keywords BEGIN and END. Figure 5-1 illustrates the general
structure of a program. The six different kinds of declarations, which
are shown in Figure 5-1, are LABEL, CONSTANT, TYPE, VARIABLE, FUNCTION,
and PROCEDURE.

PROGRAM HEADING

The main difference between standard Pascal and Prime Pascal in program
structure is the heading. In Prime Pascal, the program heading is
optional. This is a Prime extension.

A program heading has the general form:

PROGRAM identifier [([file-identifier-list])];

The keyword PROGRAM must be the first word of a program heading. It is
followed by an identifier, which is the name of the program, and an
optional file-identifier-list, which is a list of files (separated by
commas), used by the program. (Files are explained in Chapters 6 and
10.)

5 - 1 S e c o n d E d i t i o n

DOC4303-191

PROGRAM HEADING

LABEL

■
CONST

1
TYPE

VAR

>
FUNCTIONS

1
PROCEDURES

'

- BLOCK

STATEMENTS

Program Diagram
Figure 5-1

Second Edition 5-2

PASCAL PROGRAM STRUCTURE

Examples of program headings follow:

PROGRAM Sample; {The file-identifier-list may be omitted.}

PROGRAM Y(OUTFILE); {It is not necessary to list all the files}
{used by the program.}

PROGRAM X();

PROGRAM findroot(INPUT, OUTPUT);

Note

The program heading, if present, is only checked syntactically
by the Prime Pascal compiler. The compiler does not check the
existence of the files named in the file-identifier-list.

THE BLOCK

A block is divided into two parts — declaration and executable. The
declaration part contains declarations that describe all data objects
to be used in the program. The executable part, delimited by the
keywords BEGIN and END, contains statements that specify the actions to
be executed upon these declared objects. The general form of a block
i s :

[LABEL declaration;]
[CONST declaration;]
[TYPE declaration;]
[VAR declaration;]
[EUNCTION declaration;]
[PROCEDURE declaration;]

BEGIN
[statement-1 [;statement-2]...]

END.

Note

The example above shows the standard Pascal order of
declarations — LABEL, OONST, TYPE, VAR, EUNCTION, and
PROCEDURE. You should use this standard order whenever
possible. However, in Prime Pascal, the LABEL, OONST, TYPE,
and VAR declarations can appear in any order. This is a Prime
extension.

5 - 3 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

The following program contains LABEL, CONST, TYPE, VAR, and PROCEDURE
d e fi n i t i o n s :

PROGRAM EX1;
LABEL

1 ;
OONST

(ONE = 1;
TYPE

SMALL = 1..3;
VAR

TINY : SMALL;
PROCEDURE P(VAR X : SMALL) ;

, B E G I N { p r o c e d u r e P }
| X : = 1

END; {procedure P}
BEGIN {main program}

P(TINY);
IF (TINY <> ONE) THEN

BEGIN
WRITELN ('ERROR');
GOTO 1

END;
IF (TINY = ONE) THEN

WRITELN ('TINY = ', ONE)
1:
END. {program EX1}

This is a null program:

PROGRAM Empty;
BEGIN
END.

DECLARATION PART

The declaration part's six optional subparts — LABEL, CONSTANT, TYPE,
VARIABLE, FUNCTION, and PROCEDURE parts — must precede the executable
pa r t .

LABEL Declaration Part

The LABEL declaration part specifies all labels that mark statements in
the corresponding executable part. The LABEL declaration part has the
form:

label label [, label] . . . ;

Second Edit ion, Update 1 5-4

PASCAL PROGRAM STRUCTURE

The keyword LABEL heads this part.

Each declared label, which is an unsigned integer consisting of up to
four digits, must be unique and mark only one statement in the
executable part. However, if block B is nested in block A, a label
declared in A is allowed to be redefined in B. Example:

PROGRAM Test (OUTPUT) ;
LABEL 6;

PROCEDURE REDEFINE;
LABEL 6;

BEGIN
GOTO 6;

6: END; {of procedure REDEFINE}
BEGIN {main program}

REDEFINE;
GOTO 6;

6: END. {of program TEST}

Here is an illegal use of LABEL;

PROGRAM Test;
LABEL 5;
BEGIN

GOTO 5;

5: WRITELN ('HELLO') ;
GOTO 5;

5:END. {illegal}

In the example above, the label 5 marks two statements. It can only
mark one statement in a given block. This will generate a severity 3
error at compile time, and prevent successful compilation.

5 - 5 S e c o n d E d i t i o n

DOC4303-191

CONSTANT Declaration Part

All constants to be represented by names in a program must be declared
in the CONSTANT declaration part. Numeric constants are discussed in
Chapters 4 and 6. The form of this part is:

CONST identifier-1 = constant-1;
[identifier-2 = constant-2;]...

The keyword OONST heads this part.

Each identifier is a name that is associated with a specific constant.
It will be used in place of the constant throughout the entire block
containing the declaration unless the identifier is redefined.

A constant is a fixed value that may be an integer, longinteger, real,
or longreal number with an optional sign, a character-string, or a
constant-identifier (possibly signed). A constant-identifier is an
identifier that has already been assigned a constant value.

Here are some examples of CONSTANT declarations:

OONST
BLANK = ' ';
QUIT = 'QUIT' ;
TAX_RATE = 0.05;
MAX = 50;
MIN = -MAX; {MAX is a constant identifier.}

Here is an example of how constants can be used:

CONST
STOP = 'END OF OPERATIONS' ;
MAXIMUM = 100;

VAR
I : INTEGER;
A : ARRAY[1..MAXIMUM] OF INTEGER;

BEGIN
FOR I := 1 TO MAXIMUM DO

BEGIN
READ (A[I]);
WRITELN (STOP)

END;
END.

TYPE Declaration Part

All constants and variables in a program have types. The type of a
constant is determined by the syntax of that constant. The type of a
variable, on the other hand, must be explicitly specified in the
VARIABLE declaration part (explained later in this chapter).

Second Edition 5-6

PASCAL PROGRAM STRUCTURE

Prime Pascal provides seven standard (predefined) data types — ^g ^
INTEGER, LONG]OTBG_R, REAL, LONGREAL, CHAR, BOOLEAN, and TEXT. In
addition, Pascal permits users to define new data typaes in the TYPE
declaration part of a program. (Data types are discussed in detail in
Chapter 6.)

The TYPE declaration part, which always begins with the keyword TYPE,
has the form:

TYPE type-identifier-1 = data-type-1;
[type-identif ier-2 = data-type-2;]...

A type-identifier is the name of a specific data-type. It will be
associated with one or more variables in the VARIABLE declaration part.

A data-type is either a new user-defined data type or a type-identifier
that has already been associated with a new user-defined data type.

Here are some examples of TYPE declarations:

TYPE
LETTERS = 'A'..'Z';
STRINGS = ARRAY[1..50] OF CHAR;
DAYSOEWORK = (MON,TUE,WED,THUR,FRI) ;
STR = FILE OF CHAR;
CH = LETTERS; {CH and LETTERS denote the same type.}

VARIABLE Declaration Part

A variable is a named data object that can assume different values
during the execution of a program. Variables to be used in the program
must be declared in the VARIABLE declaration part. The form of this
part is:

VAR identifier-1 [, identifier-2]... : data-type-1;
[identifier-3 [, identifier-4]... : data-type-2;]...

The keyword VAR heads this part.

Each identifier is the name of a variable contained in the program.
The variable must be explicitly associated with a data-type which
determines the range of values the variable can assume, the set of
operations that can be performed on it, and the class of standard
procedures and functions that can be used on it.

The data-type may either be one of the standard data types (INTEGER,
IXNGINTEGER, REAL, LONGREAL, CHAR, BOOLEAN, or TEXT) or a 19#1
type-identif ier as defined in the preceding TYPE declaration part.

5 - 7 S e c o n d E d i t i o n

DOC4303-191

For example, consider these TYPE declarations;

TYPE
OPERATION_SIGNS = (PLUS, MINUS, TIMES);
EXAMJSCORES = 0..100;
STRING15 = ARRAY [1..15] OF CHAR;
DATE_REGORD = REOORD

MONTH: 1..12;
YEAR: INTEGER

END;
LETTERJSETS = SET OF ' A'.. * Z';
INTEGER_FILE = FILE OF INTEGER;

Based on the TYPE declarations above, you can declare variables like
th is :

VAR
OPERATORS : OPERATIONS IGNS;
SCORES : EXAM_SCORES;
STRING1, STRING2 : STRING15;
DATE
LETTERS
INTEGERS

DATE_REOORD;
LETTER_SETS;
INTEGERJFILE;

ROOT1, ROOT2
COUNTER
FLAG
FILLER
TEXTIN, TEXTOUT

REAL;
INTEGER;
BOOLEAN;
CHAR;
TEXT;

The TYPE declaration and VARIABLE declaration may be combined. For
example:

VAR
OPERATORS : (PLUS, MINUS, TIMES);
SCORES : 0..100;
STRING1, STRING2 : ARRAY [1..15] OF CHAR;
DATE : REOORD

MONTH : 1..12;
YEAR : INTEGER

END;
LETTERS : SET OF 'A'..'Z';
INTEGERS : FILE OF INTEGER;

However, it is necessary to keep the TYPE declaration and VAR
declaration separate if the variables are to be used as actual
parameters. (See Chapter 9.)

The association of an identifier and its data type is valid throughout
the entire block containing the declaration unless the identifier is
redefined. Suppose that block B is contained in block A. An
identifier declared in A can be reassigned to a variable of any type
local to B, and this redefined association is valid throughout the
scope of B. TWo examples follow.

S e c o n d E d i t i o n 5 - 8

PASCAL PROGRAM STRUCTURE

Example 1:

PROGRAM SAM1;
VAR

V : INTEGER;

PROCEDURE PI;
VAR

V : REAL;

Example 2:

PROGRAM SAM2;
TYPE

T = (TIME, TAPE, TIRE);
VAR

V : T;
PROCEDURE P2;

TYPE
T = ARRAY[1..5] OF INTEGER;

VAR
V : T;

PROCEDURE and EUNCTION Declaration Parts

Procedures and functions are the two types of subprograms in Pascal.
Every procedure or function must be declared in the PROCEDURE
declaration part or the FUNCTION declaration part of its calling
program respectively before it can be used. Procedures and functions
are discussed in detail in Chapter 9.

EXECUTABLE PART

The executable part of a program, delimited by the keywords BEGIN and
END, contains a sequence of statements that perform explicit actions on
the data described in the declaration part of the block. All
statements are discussed in detail in Chapter 8.

5-9 Second Edition

DOC4303-191

The following example shows the executable part of a program:

{Program Heading}
PROGRAM OONVERSION;

{Declaration Part}
VAR

CHARACTER : CHAR;
NUMBER : INTEGER;

{Executable Part}
BEGIN

READ (CHARACTER);
NUMBER := ORD (CHARACTER) ;
WRITELN(' CHARACTER ', " " , CHARACTER, " " ,' IS EQUAL TO NUMBER ', NUflBER)

END.

The % INCLUDE Directive

The % INCLUDE compiler directive is a Prime extension to standard
Pascal. It is a Prime Pascal keyword.

%INCLUDE provides a means of directing the compiler to include the
contents of a file in the program unit at compile time. % INCLUDE files
can hold any legal Prime Pascal code — declarations as well as
executable statements. The files could contain very long lists of
variable declarations, for example.

The general form of % INCLUDE is:

%INCLUDE 'filename';

where filename is the name of the file to be incorporated into the
program unit at the position of %INCLUDE. The filename can be a
pathname if the included file does not reside in the current directory.

A %INCLUDE directive can appear anywhere that a declaration or
definition of the declaration part or a statement of the executable
part can appear. An included file may contain additional %INCLUDEs. A
%INCLUDE file commonly contains:

• Declarations that are common to more than one program unit

• Numeric key definitions, especially for the file management
system and application library

%INCLUDE directives can be nested up to seven levels.

S e c o n d E d i t i o n 5 - 1 0

PASCAL FROGRAM STRUCTURE

The following is an example of the %INCLUDE directive:

PROGRAM SAMPLE;
%IN<_LUDE 'VAR_FILE'; {Suppose that VAR_FILE contains

{a set of commonly used}
{variable declarations.}

PROCEDURE PI;
%INCLUDE 'VAR_FILE*;

A PROGRAM EXAMPLE

The following is a somewhat more complex program example, which
contains LABEL, CONST, TYPE, VAR, and PROCEDURE declarations:

PROGRAM Bowling (INPUT, OUTPUT);

{This program computes the scores of four bowlers, the number of
spares and strikes — and the frames in which the marks were
scored — and it calculates the winner and the winning score.}

LABEL 1;

CONST
TOPFRAME = 10;

TYPE
HUMAIi_TYPE = ARRAY[1..20] OF CHAR;
PIN_TYPE = ARRAY[1..22] OF INTEGER;

VAR
NAME, BALL, FRAME, N, TOTAL, BESTSCORE : INTEGER;
PLAYER, WINNER : HUMAH_TYPE;
PINS : PINJTYPE;
INFILE : TEXT; {the input data file}

{The WINNING__FLAYER procedure determines the winning player.}

PROCEDURE WINNING__PLAYER;
BEGIN {procedure winningjplayer}

IF TOTAL > BESTSCORE THEN
BEGIN

BESTSCORE := TOTAL;
WINNER := PLAYER

END;
REAELN (INFILE);
BALL := 1;
TOTAL := 0

END; {procedure winningjplayer}

5 - 1 1 S e c o n d E d i t i o n

DOC4303-191

{Open the input file, initialize integer counters to 0. Read the
player's name and write the player's name.}

BEGIN {main program}
RESET (INFILE, 'BOWLINPUT'); {open the input data file}
BALL := 1; FRAME := 1; TOTAL := 0; BESTSCORE := 0;
WHILE NOT EOF (INFILE) DO

BEGIN
FOR NAME := 1 TO 20 DO

BEGIN
READ (INFILE, PLAYER [NAME]) ;
WRITE (PLAYER[NAME])

END;
WRITELN;

{Read the total number of balls bowled. Using this number, read
the integer array of all the pin scores for that player,
reinitialize ball to 1 again after the read, and for each frame
calculate whether the scores are strikes, spares, or non-marks.
Write out the frame number, whether that frame was a strike, spare,
or nonmark, and write out the pin scores.}

READ (INFILE, N);
FOR BALL := 1 TD N DO

READ (INFILE, PINS [BALL]) ;
BALL := 1;
FOR FRAME := 1 TO TOPFRAME DO

BEGIN
IF PINS [BALL] = 10 THEN

BEGIN
TOTAL := TOTAL+PINS [BALL]+PINS [BALL + 1] + PINS [BALL + 2];
WRITELN ('FRAME ',FRAME:2,' is a strike ',

'and PIN SO0RE is ' ,P_NS[BALL] :5) ;
IF FRAME = TOPFRAME THEN

WRITELN ('Extra pins on strike are:' ,PINS[BZ__L+1] :3,
PINS[BALL+2]:3);

BALL := SUCC(BALL)
END

S e c o n d E d i t i o n 5 - 1 2

PASCAL PROGRAM STRUCTURE

ELSE
IF PINS [BALL] + PINS [BALL + 1] =10 THEN

BEGIN
TOTAL := TOTAL + PINS [BALL] + PINS[BALL+1] + PINS[BALL+2] ;
WRITELN ('FRAME ',FRAME:2,' is a spare ',

'and PIN SOORES are ' ,PINS[BALL] :4,PINS[BALL+1] :3) ;
IF FRAME = TOPFRAME THEN

WRITELN ('Extra pin on spare is:', PINS[BALL+2] :3) ;
BALL := SUCC(SUCC(BALL))

END
ELSE
IF PINS [BALL] + PINS [BALL + 1] < 10 THEN

BEGIN
TOTAL := TOTAL + PINS [BALL] + PINS [BALL + 1] ;
WRITELN ('FRAME ',FRAME:2,' is not a mark. ',

'PIN SOORES are ', PINS [BALL]: 3, PINS [BALL + 1] :3) ;
BALL := SUCC(SUCC(BALL))

END
END; {FOR loop}

{When all the pin scores for all frames have been calculated, write
out the final score for each player.}

WRITELN ('FINAL SCORE is ',TOTAL:4);
WRITELN;
WRITELN;

{The procedure WINNING_FLAYER is called. It will keep track of
highest score and keep track of the name of the player with the
highest score, assigning the score and the name to TOTAL and
WINNER}

WINNING_PLAYER {the procedure is called here}
END; {WHILE loop}

{Write out the winner's name and the winning score, and close the
input ending the program.}

WRITE ('The winner is ', WINNER);
WRITELN;
WRITE ('with a score of' ,BESTSO0RE:4);
CLOSE (INFILE); {close the input data file}
GOTO 1; {example of GOTO statement}
1: {example of LABEL definition}

END.

5 - 1 3 S e c o n d E d i t i o n

DOC4303-191

The input data file looks like this:

pe ter la r r ing ton 18
l i s a r u b i n 2 1
a n n e l a d d 1 8
p a u l c i o t o 1 4

910 10 10 10 627382 10 90917
0 4 3 2 1 4 6 1 4 3 0 0 1 2 3 3 4 0 7 3
10 82 10 5545 10 819091 10 63
10 10 10 10 9 1 10 10 10 8 2 10 10 9

The output of this program will look like this:

peter
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
FRAME
Extra
FINAL

l a r r i n g t o n
1 is a spare and PIN SOORES are

a spare and PIN SCORES are
a strike and PIN SOORE is
a strike and PIN SCORE is

is not a mark. PIN SOORES are
is a spare and PIN SCORES are

a spare and PIN SOORES are
a strike and PIN SOORE is

is not a mark. PIN SCORES are
is a spare and PIN SCORES are

pin on spare is: 7
SCORE is 165

2
3
4
5
6
7
8
9

10

i s
i s
i s

i s
i s

10
10
10
6
7
8

10
9
9

lisa rubin
FRAME is not a mark. PIN SCORES are
FRAME is not a mark. PIN SOORES are
FRAME is not a mark. PIN SCORES are
FRAME is not a mark. PIN SOORES are
FRAME is not a mark. PIN SOORES are
FRAME is not a mark. PIN SOORES are
FRAME is not a mark. PIN SCORES are
FRAME is not a mark. PIN SCORES are
FRAME is not a mark. PIN SOORES are
FRAME 10 is a spare and PIN SOORES are
Extra piri on spare is:
FINAL

Second Edition 5-14

PASCAL IROGRAM STRUCTURE

anne ladd
FRAME 1 is a strike and PIN SCORE is
FRAME 2 is a spare and PIN SOORES are
FRAME 3 is a strike and PIN SOORE is
FRAME 4 is a spare and PIN SOORES are
FRAME 5 is not a mark. PIN SCORES are
FRAME 6 is a strike and PIN SOORE is
FRAME 7 is not a mark. PIN SOORES are
FRAME 8 is not a mark. PIN SOORES are
FRAME 9 is a spare and PIN SOORES are
FRAME 10 is a strike and PIN SCORE is
Extra pins on strike are: 6 3
FINAL SCORE is 159

10
8

10
5
4

10
8
9
9

10

paul cioto
FRAME 1 is a
FRAME 2 is a
FRAME 3 is a
FRAME 4 is a
FRAME 5 is a
FRAME 6 is a
FRAME 7 is a
FRAME 8 is a
FRAME 9 is a
FRAME 10 is a
Extra pins on

strike and PIN SOORE is 10
strike and PIN SOORE is 10
strike and PIN SOORE is 10
strike and PIN SCORE is 10
spare and PIN SOORES are 9
strike and PIN SCORE is 10
strike and PIN SCORE is 10
strike and PIN SCORE is 10
spare and PIN SOORES are 8
strike and PIN SCORE is 10
strike are: 10 9

FINAL SCORE is 256

The winner is paul cioto
with a score of 256

5-15 Second Edition

Data Types

Every constant, variable, function, or expression must have a data
type. The data type determines the set of values a variable may assume
or a function or an expression may generate. The data type also
determines which operations may be performed on the values and how
these values are represented in storage.

This chapter summarizes the data types available in Prime Pascal
— standard Pascal data types as well as Prime extensions. There are
three Prime extension data types: LCNGIRDEGER, LONGREAL, and STRING. I 19.2
Each of these data types is described later in this chapter.

Figure 6-1 illustrates all of the data types in Prime Pascal. The
internal representations of data types are illustrated in Appendix b.
Appendix D offers guidelines for interfacing Pascal data types with
those of other languages. For more information about Pascal data
types, consult a commercially available text.

SCALAR DATA TYPES

Scalar data types are the fundamental data types in Pascal. All other
data types must be built from scalar data types.

Each scalar data type has a group of distinct values, called constants,
which have a defined linear ordering. Thus, each scalar type is
ordered. Any two of these constants can be compared by asking if one
is less than, equal to, or greater than the other. The total number of
constants in a type is called the cardinality of that type.

6 - 1 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

19.21

LONGINTEGER * LONGREAL *

The Hierarchy of Data Types in Prime Pascal
*Prime extensions are flagged with an asterisk.

Figure 6-1

Scalar data types are divided into two classes: standard scalar data
types and user-defined scalar data types. The standard scalar types
are the predefined, built-in data types provided by Pascal. The
user-defined scalar types are data types that you create and define in
a program.

Standard Scalar Data Types

There are four standard scalar types — INTEGER, REAL, BOOLEAN, and
CHAR — plus two Prime extension scalar types called LONGINTEGER and
LONGREAL.

Second Edition, Update 1 6-2

DATA TYPES

The INTEGER Type: The INTEGER type comprises a subset of whole numbers
(integers), which are 16-bit, twos-complement, fixed-point binary
numbers. The values of the INTEGER type are in the range of -32768 to
+32767 or -215 to +215 -1. An integer variable is simply declared:

VAR
I : INTEGER;

You can use 32-bit whole numbers ty simply declaring variables as
LONGINTEGER, which is a Prime extension. (See the discussion on 19.1
LONGINTEGER, which follows.) However, if you do not have a Rev. 19.1
(or higher) compiler, and want to use 32-bit whole numbers, you must
declare these numbers as the constants of a subrange of the INTEGER
type itself in a TYPE or VAR declaration:

TYPE
I = -45000..+70000;

VAR
X : I;

or

VAR
X : -155000..+999000;

A 32-bit whole number can be declared within the range:

-2147483648..+2147483647

In this subrange declaration, either the lower-bound or upper-bound
should be outside the range of INTEGER. For example:

-500..+57000

Note

Comparison of unsigned integers is not supported.

There is a predefined Pascal constant called MAXINT, whose value is the
largest available integer constant of the INTEGER type. MAXINT is
32767.

6 - 3 S e c o n d E d i t i o n

DOC4303-191

Some examples of valid and invalid INTEGER type constants are:

Val id

32767
+200

0
MAXINT

-11

Invalid

32,767 {No comma allowed}
19 i 40000 {This number is a longinteger.}-32769 {This number is a longinteger.}

32.00 {A valid real number but not an integer}

There are five arithmetic operators: +, -, *, DIV (divide), and
MOD (modulus or remainder), and six relational operators: =, <>, <, >,
<=, and >= available for the INTEGER type. Table 4-1 in Chapter 4
gives a brief description of each operator. Chapter 7 gives a detailed
discussion of all Prime Pascal operators.

There are four standard functions used frequently to produce
■jq , INTEGER (or LONGINTEGER) results. In the following examples, I is anyinteger or longinteger and R is any real or longreal number:

ABS(I) {Absolute value of 1}

SQR(I) {Square of 1}

TRUNC(R) {R truncated to an integer or longinteger}

ROUND(R) {R rounded to an integer or longinteger}

See Chapter 11 for more information on standard functions.

The LONGINTEGER Type: The LONGINTBGER type is a Prime extension.
LONGINTEGER allows you to use 32-bit whole numbers without declaring a
subrange. For example:

19.1

VAR
I : LONGINTEGER;

This declaration means that the variable I can have a value anywhere
within the subrange -2147483648..+2147483647.

On Prime machines an integer is a 16-bit number, within the subrange
-32768..+32767. (See the previous discussion on the INTEGER type.)

S e c o n d E d i t i o n 6 - 4

DATA TYPES

Note

The 1XNGINTBGER type is available on Rev. 19.1 (or higher)
compilers. If you do not have a Rev. 19.1 compiler and want to
use 32-bit whole numbers, you must declare these numbers as the
constants of a subrange of the INTEGER type itself. For
example:

TYPE
I = -87000..+55000;

VAR
X : I;

or

VAR
X : -4856000..+9990000;

The arithmetic and relational operators and standard Pascal functions
can be used with l_asiGINTEGER as well as with INTEGER. LONGINTEGER
values can also be passed as parameters to procedures and functions.

It is recommended that you do not mix INTEGER types with LONGINTEGER
types. You can assign an integer to a longinteger, but when you try to
assign a longinteger to an integer, a severity 1 error message will be
g i v e n a t c o m p i l e t i m e . , g ,

LCNGINTEGER constants are allowed. The compiler decides whether the
constant is an integer or a longinteger.

Consider the following program example:

PROGRAM Longint;
CONST

X = 55000;
VAR

A : INTEGER;
B : LONGINTEGER;
C : INTEGER;

BEGIN
B : == 40000;
A :== B;
C :== X;
C : == A + B

END.

r
In the example above, LCNGINTBGER values are assigned to INTEGER
variables A and C. Each of those statements, therefore, would receive
the following severity 1 error message:

ERROR 121 SEVERITY 1 BEGINNING CN LINE zzz
A type conversion must be made in this statement and may cause the
program to fail if the conversion is not possible.

6 - 5 S e c o n d E d i t i o n

DOC4303-191

19.1

19.1

The REAL Type: The REAL type is a subset of real numbers (decimal
values). The approximate range of real numbers is -1*1038 to +1*1038 .
Real numbers are declared:

VAR
R : REAL;

Prime's real numbers are 32-bit numbers. As of Rev. 19.1, you can use
64-bit numbers by simply declaring them LONGREAL, which is a Prime
extension. (See the following discussion on LONGREAL.)

There are two methods of representing real constants — the decimal
notation and the scientific notation. (See also Chapter 4.) The
letter E in scientific notation is the exponent symbol for real
numbers. (The letter D is used for longreals.) The following are
examples of valid and invalid REAL type constants:

Val id

19.1

+12.0
3.14159

-0.123456
23 E3

-7.0E-5
+2.01E+20

Inval id

2.
.10101
3E8.5

decimal notation

scientific (floating-point) notation

{No digit to the right of the decimal point}
{No digit to the left of the decimal point}
{Only whole number exponent permitted}

There are four arithmetic operators: +, -, *, and /, and six
relational operators: =, <>, <, >, <=, and >= applicable to the REAL
type. For more information on these operators, see Chapter 7.

The following standard functions produce REAL or LONGREAL type results.
X is either an integer, longinteger, real, or longreal number.

SIN(X) {Sine of X}

COS(X) {Cosine of X}

LN(X) {Natural logarithm of X}

EXP(X) {Exponential to the X power}

SQRT(X) {Square root of X}

ARCTAN(X) {Inverse tangent of X}

See Chapter 11 for more information on standard functions, including
ABS and SQR.

Second Edition 6-€

DATA TYPES

The LONGREAL Type: The LONGREAL type is a Prime extension. Longreals
are 64-bit numbers, as opposed to reals, which are 32-bit numbers.
Variables are simply declared:

VAR
X : LONGREAL;

The arithmetic and relational operators and standard Pascal functions
can be used with LONGREAL as well as REAL. LONGREAL values can be
passed as parameters to procedures and functions.

It is recommended that you do not mix REAL and LONGREAL types for the
same reasons given in the LONGINTEGER discussion earlier in this
chapter.

Longreal numbers can also be represented in decimal notation or
scientific notation. The letter D signifies the exponent in scientific
notation for longreals. (The letter E is used for reals.) For
example:

12.3456789D-01 {scientific notation}

1 .234567 {dec ima l no ta t i on }
19 1Constants of the LONGREAL type are allowed. The compiler decides

whether the declared constant is a real or a longreal. If the constant
has more than six digits, the compiler assumes it to be LONGREAL. If
the constant has six or fewer digits, the compiler assumes it to be
REAL. For example:

OONST
A = 5.47; {stored as REAL}
B = 35.123456; {stored as LONGREAL}

When an exponent is present in a CONST declaration, the compiler
assumes the number to be REAL if the exponent symbol is the letter E,
or LCNGREAL if the exponent symbol is D. For example:

CONST
X = 2.1E01; {stored as REAL}
Y = 2.1D01; {stored as LONGREAL}

If the constant given is too large to fit into a real number but has an
E exponent, an error will be generated. For example:

OONST
Z = 1.2E45;

6 - 7 S e c o n d E d i t i o n

DOC4303-191

I The BOOLEAN Type: The BOOLEAN type has two standard constant values:
I TRUE and FALSE. When these values are compared, TRUE > FALSE.

The six relational operators =, <>, <, >, <=, and >= operate on any
I standard scalar types, user-defined scalar types, or the ARRAY OF CHAR
I string type (discussed later in this chapter) to produce a BOOLEAN

r e s u l t .

In addition, three BOOLEAN operators (OR, AND, and NOT) can be applied
only to BOOLEAN values to produce BOOLEAN results. All operators are
described in Chapter 7.

Three BOOLEAN functions (ODD, EOF, and EOLN) return BOOLEAN values TRUE
| or FALSE. See Chapters 10 and 11 for more information on these

funct ions.

The CHAR Type: The CHAR type is a group of characters, or a "character
set", that includes both printable (graphic) and nonprintable (control)
characters. The standard character set used by Prime is the ANSI,
ASCII 7-bit character set.

Internally, each character in Prime's character set has a numeric
equivalent, which establishes a chronological order of characters or
"collating sequence" for the character set. These values range from
octal 200 to octal 377 (decimal 128 to 255). The nonprintable
(control) characters are numbered 200 to 237 (octal) or 128 to 159
(decimal). The parintable (graphic) characters are numbered 240 to 377
(octal) or 160 to 255 (decimal). Appendix C lists values in the
character set.

Pascal's standard CHR function can convert a decimal number to its
corresponding character. For example:

PROGRAM Kar;
VAR

A, B : CHAR;
BEGIN

A := CHR(198) ;
B := CHR(199) ;
WRITELN (A);
WRITELN (B)

END.

The decimal numbers 198 and 199 stand for the characters F and G
respectively. The letters F and G, therefore, would be printed at your
termina l .

You can compare character values. Since 198 is less than 199:

'F' is less than 'G*

S e c o n d E d i t i o n 6 - 8

LATA TYPES

The following program compares all of the printable characters (decimal
160-255) in Prime's character set, using relational operations:

PROGRAM Karacter;
VAR

I : INTEGER;
BEGIN

FOR I := 160 TO 255 DO
BEGIN

WRITE (CHR(I));
IF ((CHR(I) >= 'A') AND (CHR(I) <= 'Z')) THEN

WRITELN(' This is a capital letter')
ELSE
IF ((CHR(I) >= 'a') AND (CHR(I) <= 'z')) THEN

WRTTELN(' This is a small letter')
ELSE
IF ((CHR(I) >= '0') AND (CHR(I) <= '9')) THEN

WRITELN(' This is a printable number')
ELSE

WRITELN(' This is punctuation or other character*)
END

END.

Caution

Prime's character set is represented by the decimal numbers 128
to 255. You should not use the CHR function on integers less
than 128 or greater than 255. Any such attempt will produce
unpredictable results.

To indicate a constant of the CHAR type, place an apostrophe (a single
quote) on each side of the character. To indicate an apostrophe, write
it twice. Examples:

•A

•7'

1 1 1 1 {Single quote}

{Blank is considered a printable character.}

Note

A constant of the CHAR type is always a single character.
Constructs such as '123' or 'STRING1 are not constants of this
type but are constants of two more complex types called ARRAY
OF CHAR and STRING, which are described later in this chapter.
STRING is a Prime extension. 19.2

6-9 Second Edition, Update 1

UID4303-192

As was explained earlier, each character corresponds to its own
internal integer, which is called the ordinal number of the character.
Using the standard function ORD — the opposite of CHR — you can get a
character's ordinal number. For example:

ORD ('A') yields 193 {Octal value 301}

ORD('a') yields 225 {Octal value 341}

ORD('l') yields 177 {Octal value 261}

There are two more standard functions particularly useful for
processing character data — PRED (predecessor function) and SUCC
(successor function). Given a value, PRED produces the next lesser
value and SUCC gives the next greater value. For example:

PRED('E') yields 'D' {The predecessor of 'E' is 'D'}

SUCC('E') yields 'F' {The successor of 'E' is *F*}

PRED(8) yields 7 {The predecessor of 8 is 7}

SUCC (8) yields 9 {The successor of 8 is 9}

PRED (ORD ('G')) yields 198 {The predecessor of G's ordinal
value is 198}

SUCC (ORD ('F')) yields 199 {The successor of F's ordinal
value is 199}

Functions are described in detail in Chapter 11.

The relational operators =, <>, <, >, <=r and >= can be used with all
character constants. For more information, see Chapter 7.

User-defined Scalar Data Types

There are two user-defined scalar types — enumerated and subrange.

The Enumerated Types: An enumerated type defines an ordered set of
values by listing these values.

To create an enumerated type, use the following type definition:

TYPE type- ident ifier = (ident ifier-1, ident ifier-2 [, ident ifier-3] . . .) ;

Second Edition, Update 1 6-10

DATA TYPES

The identifiers contained in parentheses are the constants of the new
enumerated type, and type-identif ier is the name of the new type. For
example:

TYPE
COLOR = (RED, YELLOW, GREEN, BLUE, PINK) ;
SEX = (MALE, FEMALE);
FLAG = (TRUE, FALSE);
DAYS = (MON, TUE, WED, THUR, FRI, SAT, SUN);
MONTH = (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,

DEC);

The ordinal number is 0 for the first (leftmost) constant and is
incremented ty 1 for each successive constant. The largest allowable
ordinal number of an enumerated type is 32767 on Prime computers. The
ordering relationship between any two constants is the same as between
their ordinal numbers. Therefore:

Y E L L O W i s g r e a t e r t h a n R E D |

Variables are declared to be of these newly created data types by the
variable declarations:

VAR
OOLOLIRS: COLOR;
S: SEX;
F: FLAG;
WEEKDAY: DAYS;
MONTHS: MONTH;

The type definition and variable declaration may be combined. Example:

VAR
S : (MALE, FEMALE);

Hypothetical ly, if sl, s2, and s3 are valid statements, then the
following examples, based on the above declarations, are valid
statements:

WHILE WEEKDAY <= FRI DO sl;

FOR MONTHS := MAR TD SEP DO s2;

WEEKDAY := SUCC (WED);

F := TRUE;

IF COLOURS <> GREEN THEN S3;

6 - 1 1 S e c o n d E d i t i o n

DOC4303-191

The constants of one enumerated type may not appear in any other
enumerated type. The following example is illegal:

TYPE
FAMILY = (MOTHER, FATHER, SISTER, BROTHER);
PARENTS = (FATHER, MOTHER); {this is illegal}

However, a type declared as a subrange of an enumerated type is legal:

TYPE
FAMILY = (MOTHER, FATHER, SISTER, BROTHER);
PARENTS = MOTHER. .FATHER; {this is legal}

The relational operators =, <>, <, >, <=, and >= are applicable on all
enumerated types provided both operands are of the same enumerated
type.

Three standard functions (SUCC, FRED, and ORD) apply to enumerated
types. These functions also apply to INTEGER, LONGINTEGER, BOOLEAN,
CHAR, and subrange types. For example, given the following type
d e fi n i t i o n :

TYPE
SHAPE = (SQUARE, CIRCLE, RECTANGLE, TRIANGLE) ;

then

SUCC (CIRCLE) yields RECTANGLE

PRED (CIRCLE) yields SQUARE

ORD (CIRCLE) yields 1

{Successor of CIRCLE}

{Predecessor of CIRCLE}

{Ordinal number of CIRCLE}

Caution

When the PRED value of the leftmost enumerated type element
or the SUCC value of the rightmost enumerated type element
— an out-of-bounds value — is assigned, no compile-time
or runtime errors are generated.

The Subrange Types: A subrange type is a data type that comprises a
specified range of any other already defined scalar data type, except

19.1 | types REAL and LONGREAL.

To define a subrange type, use the following type definition.

TYPE type-identifier = lower-bound..upper-bound;

Second Edition 6-12

DATA TYPES

Both lower-bound and upper-bound are constants of the same standard
scalar type (except REAL and LONGREAL) or previously defined enumerated
tYP^f termed the base type, and the lower-bound value must not be
greater than the upper-bound value. The type-identif ier is the name of
the new data type that comparises only those base tyjpe constants between
the lcwer-bound and upper-bound. The following are examples of
subrange typ>es:

TYPE

EXAMSGORE = 0..100; {Subrange of INTEGER}
DIGITS = '0'..'9'; {Subrange of CHAR}
LETTERS = 'A'..*Z'; {Subrange of CHAR}

DAYS = (MON, TUE, WED, THUR, FRI, SAT, SUN); {Enumerated type}
WEEKDAYS = MON..FRI; {Subrange of DAYS}

MONTHS = (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC) ;
VACATION = JUN..SEP; {Subrange of MONTHS}
FIRST__TERM = JAN..MAY; {Subrange of MONTHS}

Once the new data types are defined, they will be associated with
appropriate variables by variable declarations:

VAR
SOORES : EXAMSCDRE; {EXAMSOORE is a subrange of INTEGER

defined in the example above.}

The type definition and variable declaration may be combined:

VAR
SCORES : 0..100;

According to standard Pascal, you cannot assign an element that is
outside the subrange. Based on the above example, the assignment
SCORES := 95 is permissible, but SOORES := 101 is not.

Caution

Prime's compiler will not give you an error message when you
mistakenly assign an element that is outside the subrange.

Any operations that are normally performed on scalar types can be
applied to subrange types. For example, if you have a subrange of
integers, you can use any operation that you would normally use on
integers.

6 - 1 3 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

Constants of subranges of types INTEGER and LONGIOTEGER can either be
16-b i t or 32-b i t twos-complement , fixed-po in t b inary numbers
respectively. Examples:

CONST
NUMBERS = -33000..+33000;
LIMITS = 40000..60000;
YEARS = 1700..1900;

{32-bit binary numbers}
{32-bit binary numbers}
{16-bit binary numbers}

STRUCTURED DATA TYPES

19.2

A structured data type is characterized by the type of its components
and by its structuring method. A component may have a scalar or
structured data type. Although a structured data type can be quite
sophisticated, it is ultimately built up from scalar data types.

There are five basic structured data types — STRING, ARRAY, REOORD,
SET, and FILE. The STRING type is a Prime extension. Each of these
data types can be declared in a TYPE or VAR declaration.

Caution

The keyword PACKED is not supported on Prime Pascal. This is a
Prime restriction. Use of PACKED will generate a severity 1
error at compile time.

19.2

THE STRING TYPE

The STRING data type is a Prime extension. Similar to the PL/I-G
CHARACTER VARYING type, the STRING type makes it easy to manipulate
character strings in Prime Pascal. Unlike an array of characters,
which must contain a precise number of character elements, STRING
allows you to assign, compare, concatenate, read, write, and pass
character strings that have a varying number of elements.

For information on passing Pascal strings to PL/I-G CHARACTER VARYING
strings and vice versa, see Appendix D, INTERFACING PASCAL TO OTHER
LANGUAGES.

Second Edition, Update 1 6-14

DATA TYPES

Declaring Strings

A variable of type STRING is declared in this form:

VAR
string-identifier : STRING[n];

The string-identifier is the variable of STRING type, and n is the
maximum number of character elements allowed in the string. This
number is called the maximum length of the string. If n is not given
in a STRING declaration, the maximum length is 80 by default.

Consider the following example:

VAR
A : STRING; {80 characters}
B : STRING[5]; {5 characters}
C : STRING[10]; {10 characters}

BEGIN
B := 'HI';
C := 'HELLO';
WRITELN(C)

END.

The maximum length of string A is 80 characters. Strings B and C have
maximum lengths of 5 and 10 respectively. During execution, at the
WRITELN statement, B contains two characters and C contains five
characters. Therefore, variables declared as type STRING can hold 19,2
character-string values of any length less than or equal to the maximum
length of the string. The length of a character string assigned to a
STRING variable is called the operational length of the string. Thus,
in the example above at the WRITELN statement, string B has a maximum
length of 5 and an operational length of 2. String C has a maximum
length of 10 and an operational length of 5. The operational lengths
may change when new values are assigned to the character strings.

You can use CONST and TYPE declarations with STRING. For example:

OONST
STRING_LENGTH = 20;

TYPE
STRING_2 = STRING[2];
STRING_5 = STRING [5] ;
STRTNG_20 = STRI_^[STRI1^__LENGTH] ;

VAR
ST2 : STRTNG_2;
ST5 : STRING_5;
ST20 : STRING_20;

Note

A string can be declared to have a maximum length of 32767
characters and a minimum length of 1 character.

6-14A Second Edi t ion, Update 1

UPD4303-192

The Null String

A null string, which is specified by ", is allowed. Null strings can
be used to initialize strings. You may assign a null string, but an
attempt to write a null string will generate a runtime error. The null
string is also a Prime extension. Here is an example of a null string
assignment:

VAR
S : STRING[10];

BEGIN
S := "';

Assigning Strings

Strings can be assigned to one another. When the value of one string
is assigned to another string, the operational length is also assigned.

Note

A character literal string consists of one or more characters
enclosed in single quotes. It should not be confused with a
string, which is a variable that represents a STRING type
va lue. Character l i te ra l s t r ings , such as 'HELLO' or

19.2 'greetings', may be assigned to strings.

Here is an example that assigns character literals to strings and
assigns one string to another string:

VAR
ST2 : STRING[2];
ST5 : STRING[5];

BEGIN
ST2 := 'HI*;
ST5 := 'HELLO';
ST5 := ST2 {operational length of ST5 is 2}

{and its value is 'HI'}
END.

If the operational length being assigned is larger than the maximum
length of the string receiving the assignment, the excess characters
are truncated. For example:

VAR
ST2 : STRING [2];
ST5 : STRING[5];

BEGIN
ST5 := 'HELLO';
ST2 := ST5 {value of ST2 is now 'HE'}

E N D . { a n d i t s o p e r a t i o n a l l e n g t h i s 2 }

Second Edi t ion, Update 1 6-14B

DATA TYPES

Here is another example of string assignments:

OONST
STR__LENGTH = 10;

VAR
A : STRING;
B : STRING[4];
C : STRING[8];
D : ST3UM_[STRJ_ENGTH];

BEGIN
B := 'four'; {operational length is 4}
B := ' fo ' ; {operat ional length is 2}
D := '1234567890'; {operational length is 10}
D : = ' 1 2 3 4 5 ' ; { o p e r a t i o n a l l e n g t h i s 5 }
D := B; {value of D is 'fo'}
D := '123456';
B := D; {value of B is '1234'}
A := "; {this is a legal assignment}
WRITELN (A) {but this will cause a runtime error}

END.

Here are two rules governing string assignments:

• If the operational length of the string being assigned (the
sending string) is less than or equal to the maximum length of
the receiving string, then the entire string value is assigned,
and the receiving string assumes the operational length of the
sending string.

• If the operational length of the sending string is greater than
the maximum length of the receiving string, then only the number
of characters in the sending string equal to the maximum length
of the receiving string are assigned. The remaining characters
are not assigned.

Assigning Arrays and Strings to Each Other

Strings and arrays of characters can be assigned to one another through
the use of two functions, _7DR and UNSTR. The STR function converts an
array of characters or a single character to a string, and the UN£TR
function converts a string to an array of characters or to a single
character. The STR and UNSTR functions are Prime extensions.

The result of the STR function is a string with a length of the same
number of characters as the array of characters argument. The result
of an STR function may be used anywhere a string may be used. |

19.2

6-14C Second Edit ion, Update 1

UPD4303-192

The result of the UNSTR function is an array of characters or a single
character. The number of characters in the newly formed array is
determined by context. That is, the context of whatever array length
is expected determines the length. The result of an UNSTR function may
be used anywhere an array of characters is expected. Here are seme
specific rules governing the use of the UNSTR function:

• If the result of the UNSTR function is being assigned to an
array of characters, then that result will have the same number
of characters as the receiving array of characters.

• If the result of the UNSTR function is being
procedure or function, then that result will
number of characters as the formal parameter.

passed to a
have the same

19.2

• If the result of the UNSTR function is being compared to an
array of characters, then that result will have the same number
of characters as the array of characters to which it is being
compared.

• If the UNSTR function is used in any other context, the length
of the resultant array will be the same as the operational
length of the string argument.

Here is an example that converts strings and arrays
one another using STR and UNSTR:

of characters to

VAR
ST4
ST8
AR4
AR8

BEGIN
AR4
ST4
AR4
ST8
AR8
ST4
ST4
AR4
AR8
ST8
AR4

END.

: STRING[4];
: STRING[8];
: ARRAY[1..4] OF CHAR;
: ARRAY[1..8] OF CHAR;

:= 'JUNK';
:= STR(AR4); {value of ST4 is 'JUNK'}
:= 'BLUE';
:= STR(AR4); {value of ST8 is 'BLUE'}
:= 'LAVENDER';
:= STR(AR8); {value of ST4 is 'LAVE'}
:= 'JUNK';
:= UNSTR(ST4); {value of AR4 is 'JUNK'}
:= UNSTR(ST4); {value of AR8 is 'JUNK
:= 'LAVENDER';
:= UNSTR(ST8) {value of AR4 is 'LAVE'}

' }

I Arrays of characters are discussed later in this chapter,

Second Edition, Update 1 6-14D

DATA TYPES

Comparing Strings

String comparisons are allowed according to the following rules:

• If the strings have the same operational length, a normal
comparison operation will be done.

• If the operational lengths of the strings are different, blanks
will be assumed to follow the shorter string.

Here is an example that compares strings:

VAR
ST4 : STRING[4];
ST8 : STRING[8];

BEGIN
ST4 := 'BLUE';
ST8 := 'LAVENDER';
IF ST8 > ST4 THEN

WRITELN ('Pass') {this will pass}
E L S E 1 9 . 2

WRITELN('Fail ') ;
ST8 := ST4; {ST8 is now 'BLUE'}
IF ST8 = ST4 THEN

WRITELN('Pass') {this will pass}
ELSE

WRITELN ('Fail')
END.

Concatenating Strings

Prime Pascal's concatenation operator (+) concatenates two strings into
one string. The concatenation operator is a Prime extension. There is
no concatenation operator in standard Pascal.

The resultant length of the newly formed string equals the sum of the
operational lengths of the two concatenated strings. Either or both of
the strings may be a character literal string.

6-14E Second Edit ion, Update 1

UPD4303-192

Here is an example that uses concatenation:

19.2

VAR
ST2
ST4
ST6
ST11
AR2
AR4
AR6

BEGIN
ST2
ST4
AR2
AR4
ST6
ST6
ST4
ST11
ST4
ST4
ST6
AR6
ST2
ST4
ST6
I F

STRING [2];
STRING[4];
STRING[6];
: STRING[11];
ARRAY[1..2] OF CHAR;
ARRAY[1..4] OF CHAR;
ARRAY[1..6] OF CHAR;

■HI ' ;
'BALL';
•GO';
'BLUE';
ST2 + ST4; {ST6 equals 'HIBALL'}

= ST4 + ST2; {ST6 equals 'BALLHI'}
= ST2 + ST4; {ST4 equals 'HIBA'}
:= ST2 + ST4 + 'HELLO'; {ST11 equals 'HIHIBAHELLO'}
= ST2; {ST4 equals 'HI'}
= ST2 + ST4; {ST4 equals 'HIHI'}
= STR(AR2) + STR(AR4); {ST6 equals 'GOBLUE'}
= UNSTR(STR(AR4) + STR(AR2)); {AR6 equals 'BLUEGO'}
= 'PA';

'SCAL';
ST2 + ST4;

ST6 THEN
{this passes}

{this passes}

{this passes}

= 'PASCAL'
WRITELN ('Pass')

ELSE
WRrTELN('Fail ');

IF ST6 = ST2 + ST4 THEN
WRITELN ('Pass again')

ELSE
WRITELN ('Fail');

IF ST6 = 'PA' + 'SCAL' THEN
WRITELN ('This works too')

ELSE
WRITELN ('Fail');

AR6 := UNSTR(ST6);
IF AR6 = 'PASCAL' THEN

WRITELN ('Passes to array')
ELSE

WRITELN ('Array fails');
IF AR6 = UNSTR(ST2 + ST4) THEN

WRITELN ('Passes to array again')
ELSE

WRITELN ('Array fails')
END.

{this passes}

{this passes}

The concatenation operator is also discussed in Chapter 7.

Second Edition, Update 1 6-14F

DATA TYPES

Reading and Writing Strings

When reading a string, you can enter any number of characters up to the
maximum length. Consider the following program, which contains a READ
statement:

VAR
ST10 : STRING[10];

BEGIN
READ(STIO)

END.

If the input were:

ABC(carriage return)

the program would assign 'ABC to ST10 when the carriage return is
entered.

If the inpot were:

A B C D E F G H I J K 1 9 . 2

the program would complete execution the moment the 'K' character was
typed, because the 'J' character is the tenth character.

When you use a READLN statement, the number of characters before the
carriage return becomes the operational length of the string up to the
maximum length of that string.

Consider the following example:

VAR
ST5 : STRING[5];

BEGIN
REAELN(ST5)

END.

If the input were:

ABC(carriage return)

the value of ST5 would be 'ABC and ST5 would have an operational
length of 3 characters.

6-14G Second Edit ion, Update 1

UPD4303-192

If the input were:

ABCDE(carriage return)

o r

ABCDEPGHUKLM(carriage return)

the value of ST5 would be 'ABCDE' and the operational length of ST5
would be 5 characters. In either case, the program would not terminate
until the carriage return was typed.

When reading two strings with one READ or READLN statement, you must
enter all of the characters of the first string, up to its maximum
length, before you can begin entering characters for the second string.
Consider the following example:

VAR
STI, ST2 : STRING[10];

BEGIN
READ (STI, ST2)

END.

If the input were:

! 9 # 2 A B C D E P G H U K L M

the characters 'ABCDEEGHIJ' would be assigned to STI, and 'KLM' would
be assigned to ST2. In order to assign characters to ST2, 10
characters must be assigned to STI.

If you enter less than 10 characters, or if you enter only 10
characters, then the null string is assigned to ST2. (Null strings
cannot be written out.)

When a string is written, the default field width is the operational
length of the string. If a field width is specified, and the width of
the field to be printed is greater than the operational length of the
string, then the string is right justified in the field and blank
padded on the left. If the specified field width is too small, then
only the specified number of characters will be printed.

Here is an example of writing strings with different field widths:

VAR
ST10 : STRING[10];

BEGIN
ST10 := 'ABCDEFGH'; {eight characters}
WRITELN(STIO) ;
WRITELN(ST10:12);
WRITELN(ST10:2)

END.

Second Edit ion, Update 1 6-14H

DATA TYPES

The output will look like this:

ABCDEFGH
ABCDEFGH

AB

Here is another example that reads and writes strings to and from the
terminal and PRIMOS data files:

VAR
ST5 : STRING[5];
ST10 : STRING[10];
STRINGINPUT : FILE OF CHAR;
STRINGOUTPUT : FILE OF CHAR;

BEGIN
WRITE ('Enter an ST5 value: ');
READLN(ST5) ;
WRITELN(ST5) ;
WRITE('Enter an ST10 value: ');
REAELN(STIO) ;
WRITELN(STIO) ;
W R I T E L N (S T 5 + S T 1 0) ; 1 3 ' Z
RESET (STRINGINPUT, 'STINPUT*);
REAII_N (STRINGINPUT, ST5) ;
REWRITE (STRINGOUTPUT, 'STOUTPUT');
WRITELN (STRINGOUTPUT, ST5);
READLN(STRINGINPUT, ST10) ;
WRITELN (STRINGOUTPUT, ST10) ;
WRITELN (STRINGOUTPUT, ST5 + ST10) ;
CLOSE (STRINGINPUT);
CLOSE (STRINGOUTPUT)

END.

Passing Strings to Procedures and Functions

Strings can be passed as parameters to procedures and functions. They
may be passed by value or by reference and may return as arguments from
functions.

The STRING assignment rules, given earlier in this chapter, apply to
passing strings to procedures and functions.

6-141 Second Edition, Update 1

UPD4303-192

Here is an example that passes strings to procedures and functions:

TYPE
STRING_6 = STRING [6];
STRING_3 = SIRING[3] ;
STRING__10 = STRING[10];

VAR
GLOBALJLO : STRINGJLO;
GLOBAL__6 : STRING_6;

PROCEDURE PROCl(S : STRING_6); {GLOBALJLO is passed to S}
B E G I N { a n d i s t r u n c a t e d t o ' T E S T I N ' }

W R I T E L N (S) { ' T E S T I N ' w i l l b e w r i t t e n }
END;

PROCEDURE PROC2(VAR S : STRING_6); {GLOBALJL0 is assigned to}
B E G I N { t h e p a r a m e t e r G L O B A L _ 6 }

S := GLOBALlJLO
END;

EUNCTION EUNC(S : STRING_6) : STRING_3; {GLOBAL__10 becomes}
B E G I N { s u b s t r i n g ' T I N ' }

FUNC := SUBSTR(S, 4 , 3) { i ns ide func t ion }
END;

BEGIN {main}
GLOBAL__10 := 'TESTING';
PROC1(GLOBAL__10);
PROC2(GLOBAI_.6);
WRITELN(GLOBALJ.); {'TESTIN' will be written}

19.2 GLOBAL_JL0 := FUNC(GLOBAL_JL0);
WRITEa_N(GLOBAL_J.O) {'TIN' will be written}

END.

For complete information on procedures and functions, see Chapter 9.

String Functions

There are seven other built-in functions that manipulate strings in
addition to the STR and UNSTR functions. All of these functions are
Prime extensions. They are:

• LENGTH

• INDEX

• SUBSTR

• DELETE

• INSERT

• TRIM

• LTRIM

Second Edi t ion, Update 1 6-14J

DATA TYPES

The LENGTH Function: This function takes a string as an argument and
returns an integer that is the operational length of the string. A
string literal may not be used with this function.

The INDEX Function: This function takes two strings as arguments. It
searches the first string to determine if it contains the second
string. The first argument, therefore, is the string to be searched.
The second argument is the string to be searched for. The function
returns an integer that gives the position in the first string that
indicates the beginning of the second string. If the second string is
not found in the first string, a zero is returned. The first argument
must be a string and not a string literal. The second argument may be
a string, a string literal, or a character.

The SUBSTR Function: This function takes three arguments — a string
and two integers. It yields a substring of the first argument, which
is a string. The second argument is the starting position of the
substring in that string. The third argument is the desired length of
the substring. The function returns a string. The first argument must
be a string and not a string literal.

The DELETE Function: This function takes three parameters — a string 19*2
and two integers. It deletes a specified substring within the given
string, and returns a string. The function takes the first argument,
the string, starting at the position specified by the first integer,
and deletes the number of characters specified by the second integer.
The first argument must be a string, not a string literal.

The INSERT Function: This function takes three arguments — two
strings and an integer. It inserts the second string into the first
string, and returns a string. The integer specifies the position in
the first string where the second string is to be inserted. The first
argument must be a string and not a string literal. The second
argument may be a string, a string literal, or a character.

The TRIM Function: This function takes a string as an argument and
returns a string. It removes all trailing blanks. The argument must
be a string, not a string literal.

The LTRIM Function: This function takes a string as an argument and
returns a string. It removes all leading blanks. The argument must be
a string, not a string literal.

6-14K Second Edi t ion, Update 1

UPD4303-192

Here is an example that uses all these functions:

VAR
ST8 : STRING[8];
ST10 : STRING[10];
I, J, K : INTEGER;

BEGIN
ST10 := 'ABCDEF';
I := LENGTH(ST10); {I equals 6}

1 9 . 2 S T 8 : = ' C D E ' ;
I := INDEX(ST10, ST8); {I equals 3}
J := INDEX(ST8, ST10); {J equals 0}
ST8 := SUBSTR(ST10, 3, 2); {ST8 equals 'CD'}
ST8 := DELETE (ST10, 3, 2); {ST8 equals 'ABEF'}
ST8 := INSERT(ST8, 'HI', 2); {ST8 equals 'AHIBEF'}
ST10 := ' A B C '; {10 characters}
ST10 := TRIM(STIO); {ST10 equals 'A B C - 8 characters}
ST10 := LTRIM(STIO) {ST10 = 'A B C - 7 characters}

END.

THE ARRAY TYPE

An array is a data structure that is a collection of elements of
identical type. This group of elements is identified by one variable
name. An element of an array is accessed by its location within the
array. For example, an array can be declared:

VAR
A : ARRAY[1..10] OF INTEGER;

The array called "A" has 10 consecutive integer elements. The first
element is A[l], the second is A[2], and so on. The number in square
brackets that identifies the array element is called the index. You
can read and write an array element this way:

READ(A[1]);
WRITE (A[l]);

Second Edi t ion, Update 1 6-14L

DATA TYPES

To read and write all of the elements, you can say:

FOR I := 1 TO 10 DO
BEGIN

READ(A[I]);
WRITE (A [I])

END;

Here is an example of how ARRAY types are declared within a TYPE
dec lara t ion :

TYPE
NUMBERS = ARRAY[1..50] OF INTEGER;

The new data type (ARRAY type), which has 50 integer elements, is
called NUfCERS. In the VAR declarations, therefore, you can declare
variables to be of type NUIVBERS. For example:

VAR
X, Y : NUIVBERS;

The identifiers X and Y are arrays, each having 50 integer elements.

The type of array index, termed the index type, must be a scalar data
type other than REAL or LONGREAL. The data type of the array itself
can be any data type, including arrays and other structured typ)es.

Three examples of arrays follow:

Example 1:

TYPE
SAMPLE! = ARRAY[1..100] OF REAL;

VAR
R : SAMPLE1;

This declaration indicates that R will be a 100-element array of
REAL. The first element will be accessed ty R[l], the second by
R[2], and the hundredth by R[100].

Example 2:

TYPE
DAYS = (MON, TUE, WED, THUR, FRI, SAT, SUN) ;
SAMPLE2 = ARRAY [DAYS] OF INTEGER;

VAR
D : SAMPLE2;

These declarations indicate that D will be a seven-element array of
INTEGER. The first element will be referenced ty D[M0N], the
second by D[TUE], and the seventh ty D[SUN],

6 - 1 5 S e c o n d E d i t i o n

DOC4303-191

Example 3:

TYPE
EXAMSOORE = 0..100;

VAR
STUDENTSGORE : ARRAY [1.. 50] OF EXAMSOORE ;

BEGIN
STUDENTSOORE[1] := 98

END.

To define arrays as external in a program, that is, so that they can be
used by external subprograms, you can use the following technique:

VAR

{Local variables:}

D: ARRAY[1..10] OF INTEGER;
Y: (BLUE, PINK, YELLOW, RED);

{$E+ Defines external variables}

A: ARRAY[-32767.. +32767] OF REAL;
C: ARRAY[-32767..+32767] OF CHAR;

{$E- Ends external definitions}

INTEGER is allowed as an array index. The array must be declared as an
external array with the {$E+} compiler switch. For example:

VAR
{$E+}
A : ARRAY [INTEGER] OF INTEGER;

1 8 . 3 t $ E - }

The declaration above produces the same results as:

A : ARRAY[-32768..+32767] OF INTEGER;

LONGINTEGER is not allowed as an array index.

The maximum size of an array is 64K words long. If an array is
declared as external with the {$E+} compiler switch, then more space
will be allocated to the array.

Note

The {$E+} compiler switch is similar in function to the PL/I
EXTERNAL attribute or the FORTRAN COMMON block. The {$E+}
compiler switch is discussed in Chapters 2 and 9.

S e c o n d E d i t i o n 6 - 1 6

DATA TYPES

Array of Characters: A line of text, or "character string", can be
represented as an array of characters. This particular array is called
ARRAY OF CHAR.

Unlike a STRING type character string, which can have values of a
varying number of character elements, an array of characters must
contain a precise number of character elements.

A variable receiving an array-of-character assignment or a formal
parameter receiving an array-of-character value must be declared to
have the precise number of elements as the array being assigned or iq 9
p a s s e d . i y , z

Therefore, if you want to manipulate character strings of varying
length, use STRING. If you want to manipulate character strings that
always contain a precise number of elements, use ARRAY OF CHAR. (The
STRING type is a Prime extension, and it is fully discussed earlier in
this chapter.)

A typical VAR declaration of an ARRAY OF CHAR would be:

VAR
A : ARRAY[1..60] OF CHAR;

The identifier "A" is an array with 60 character elements. A[l] is the
first character, and A[60] is the last. Any character string value
assigned to A must have 60 characters.

Here is an example of how an ARRAY OF CHAR (string) type is declared
within a TYPE declaration:

TYPE
STRING1 = ARRAY[1..10] OF CHAR;

Two more examples follow:

TYPE
STRING1 = ARRAY[1..10] OF CHAR;

VAR
STRING2 : STRING1;

BEGIN
STRING2 := 'ABCDEEGHIJ';
STRING2 := *AB' {This is an inval id assignment.}

{The string must contain 10}
{characters.}

END.

6 -17 Second Ed i t i on , Upda te 1

DATA TYPES

Here is another example:

TYPE
LENGTH = 1..30;
STRING30 = ARRAY [LENGTH] OF CHAR;

VAR
ALPHA : STRING30;
I : LENGTH;

BEGIN
FOR I := 1 TD 30 DO

READ (ALPHA[I])
END.

Note

Although Prime Pascal does not support the keyword PACKED in
type definitions, an ARRAY OF CHAR is always stored as a packed
ARRAY OF CHAR on Prime computers.

6-17A Second Edit ion, Update 1

UPD4303-192

The result of the UNSTR function is an array of characters or a single
character. The number of characters in the newly formed array is
determined by context. That is, the context of whatever array length
is expected determines the length. The result of an UNSTR function may
be used anywhere an array of characters is expected. Here are some
specific rules governing the use of the UNSTR function:

• If the result of the UNSTR function is being assigned to an
array of characters, then that result will have the same number
of characters as the receiving array of characters.

• If the result of the UNSTR function is being passed to a
procedure or function, then that result will have the same
number of characters as the formal parameter.

• If the result of the UNSTR function is being compared to an
array of characters, then that result will have the same number
of characters as the array of characters to which it is being
compared.

• If the UNSTR function is used in any other context, the length
of the resultant array will be the same as the operational
length of the string argument.

Here is an example that converts strings and arrays
one another using STR and UNSTR:

of characters to

VAR
ST4
ST8
AR4
AR8

BEGIN
AR4
ST4
AR4
ST8
AR8
ST4
ST4
AR4
AR8
ST8
AR4

END.

: STRING[4];
: STRING[8];
: ARRAY[1..4] OF CHAR;
: ARRAY[1..8] OF CHAR;

:= 'JUNK';
:= STR(AR4); {value of ST4 is 'JUNK'}
:= 'BLUE';
:= £TR(AR4); {value of ST8 is 'BLUE'}
:= 'LAVENDER';
:= STR(AR8); {value of ST4 is 'LAVE'}
:= 'JUNK';
:= UNSTR(ST4); {value of AR4 is 'JUNK'}
:= UNSTR (ST4); {value of AR8 is 'JUNK
:= 'LAVENDER';
:= UNSTR(ST8) {value of AR4 is 'LAVE'}

' }

Arrays of characters are discussed later in this chapter,

Second Edition, Update 1 6-18

DATA TYPES

If you are using a READ, all 30 characters must be typed in. The
remainder of the array will not be padded with blanks, according to the
standard Pascal definition of READ.

Multidimensional arrays can be read more easily with Prime's ARRAY OF
CHAR:

VAR
A : A R R A Y [1 . . 1 0 , 1 . . 2 0 0] O F C H A R ; 1 9 i

BEGIN
READLN(A[1]);

This will read the first row of 200 characters into A[l]. A READ(A)
statement would generate an error because you would be trying to read
an array of strings, and not a single string.

For more information on multidimensional arrays, see the discussion
that follows.

Multidimensional Arrays: As defined in the previous section, the type
of an array can be any data type. If the type of an array is an ARRAY
type or a sequence of two or more ARRAY types, the array is a
multidimensional array. Example:

CONST
SIZE = 100;

VAR
SAMPLE : ARRAY [BOOLEAN] OF ARRAY[1..10] OF ARRAY[SIZE] OF REAL;

The above declaration can be simplified to more convenient forms:

VAR
SAMPLE : ARRAY [BOOLEAN, 1..10, SIZE] OF REAL;

or

SAMPLE : ARRAY [BOOLEAN] OF ARRAY [1..10, SIZE] OF REAL;

or

SAMPLE : ARRAY [BOOLEAN, 1..10] OF ARRAY[SIZE] OF REAL;

An array can have up to eight dimensions.

In general, to create a multidimensional array, use the following type
d e fi n i t i o n :

TYPE type-identifier = ARRAY [tl, t2,...] OF base-type;

6 - 1 9 S e c o n d E d i t i o n

DOC4303-191

where tl, t2r etc. are index types. If three index types are
specified, the ARRAY type is called three-dimensional, and an array
element is designated by three indexes. For example:

CONST
NUM_OF_CLASSES = 3; {3 classes}
NUM_OF_STUDENTS = 20; {20 students in each class}
NUM_OF_EXAMS = 4; {Each student took 4 exams}

TYPE
SCORE = ARRAY [1. ,_XJM_OF_CLASSES, 1.. NJM_OF_STUDENTS,

l..NUM_OF_EXAMS] OF INTEGER;
VAR

STUDENTSOORE : SCORE;

STUDENTSCORE[3, 20, 4] would designate the fourth exam of the twentieth
student in class number 3.

STUDENTSOORE[2, 10, 3] would designate the third exam of the tenth
student in class number 2.

The REOORD Type

A record is a structure consisting of a fixed number of elements,
called fields, which may be of different data types. Each record's
field has a name, called the field identifier.

To define a RECORD structure, use the following TYPE declaration:

TYPE record-identifer = REOORD
field-identif ier-1: type;

field-identifier-n: type
END;

where record-identifier is the name given to the entire record. Each
field-identifier and its associated type, which can be any type, even
another RECORD type, are listed between the keywords REOORD and END.

S e c o n d E d i t i o n 6 - 2 0

DATA TYPES

Example 1:

TYPE
PERSON == REOORD

NAME : ARRAY [1..25] OF CHAR;
AGE : 0..99;
SEX : (MALE, FEMALE);
SOC_NUM : LONGINTEGER

END;

Example 2:

TYPE
OJSTOMER_REOORD =

RECORD
NAME : ARRAY [1..30] OF CHAR;
ID_NUM : INTEGER;
INVOICE_DATE : REOORD

MONTH : (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);

DAY_OF_MON : 1..31
END; {OF the INVOICE_DATE record}

DISCOUNT, AMT_PAID : REAL
END; {OF the CUSTOMEI__REOORD}

Example 3:

TYPE DATE = RECORD
DAYOEWEEK

MONTH

DAYO-TON
YEAR

END;

(SUN, MON, TUE, WED,
THUR, FRI, SAT);

(JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);

1 . . 3 1 ;
INTEGER

FAMILY = (FATHER, MOTHER, BROTHER, SISTER) ;

VAR
DATE1, DATE2 : DATE;
BIRTHDAY : ARRAY [FAMILY] OF DATE;

To access a particular record element, follow the name of the variable
by a period and the name of the element:

r e c o r d - v a r i a b l e . fi e l d - i d e n t i fi e r

6-21 Second Edition

DOC4303-191

Using Example 3 above, if DATE1 is to contain the date:

Tuesday, July 15, 1983

the following assignment statements will be written:

DATE1.DAY0EWEEK «.= TUE;
DATE1. MONTH .= JUL;
DATE1.DAYOFM0N := 15;
DATE1.YEAR := 1983;

If the BIRTHDAY of SISTER is:

Saturday, December 6, 1975

the following assignment statements will be written:

BIRTHDAY [SISTER] .DAYOEWEEK
BIRTHDAY [SISTER] .MONTH
BIRTHDAY[SISTER] .DAYOET/DN
BIRTHDAY [SISTER] .YEAR

= SAT;
= DEC;
= 6;
= 1975;

The maximum size of a record is 64K words. If a record is declared as
external with the {$E+} compiler switch, then more space will be
allocated to the record. (For more information on the {$E+} compiler
switch, see Chapters 2 and 9.)

The references to elements in a record structure can be simplified by
using the WITH statement. The general form of the WITH statement is:

WITH record-variable-1 [, record-variable-2]...DO statement

Within the statement after DO, record elements may be referred to by
field identifiers only. This form of record access allows the compiler
to generate more efficient code and allows you to write more readable
code. WITH should be used when a large number of components of a
record is to be accessed.

S e c o n d E d i t i o n 6 - 2 2

DATA TYPES

Using the WITH statement, you would write the previous assignment
statements as follows:

and

WITH DATE1 DO
BEGIN

DAYOFWEEK . = TUE;
MONTH = JUL;
DAYOFMON : = 15;
YEAR = 1983

END;

WITH BIRTHDAY [SISTER] DO
BEGIN

DAYOFWEEK := SAT;
MONTH := DEC;
DAYOFMON := 6;
YEAR := 1975

END;

Note

The WITH statement is also discussed in Chapter 8.

Records with Variants: In Pascal, different record values of the same
REOORD type need not have the same fields. In most cases, each of
these records can be divided into two parts — a fixed part, which has
fields common to all these records, and a variant part, which has
fields varying from record to record. The fixed part must precede the
variant part.

To define records with variants, use the following RECORD type
defin i t ion :

TYPE record-identifier =
REOORD

[fi e l d - i d e n t i fi e r - 1 : t y p e ;] . . . { fi x e d p a r t }
[CASE [tag-field:] tag-type-identif ier QF {variant part}

variant-1 [; variant-2]...]
END;

Note
Variant field values share the same storage area. Therefore,
when a value of one field is assigned, it replaces or
"overlays" the previously assigned field value in storage.
(See Example 4.)

6 - 2 3 S e c o n d E d i t i o n

DOC4303-191

Example 1:

TYPE PERSON = REOORD
I__NAME, F_NAME: ARRAY[1..20] OF CHAR;
AGE: 0..100;
SEX: (MALE, FEMALE);
CASE MARRIED: BOOLEAN OF

TRUE: (SPOUSE_NAME: ARRAY[1..40] OF CHAR;
SPOUSE_AGE: 0..100);

FALSE: () {No variant fields for this case}
END;

If a person is married, the field MARRIED, called the tag-fieldf
will be TRUE, and two additional fields, called variant fields,
will exist — SPOUSE_NAME and SB0USE_J_3E. These variant fields
will not exist if MARRIED is FALSE.

Example 2:

TYPE PERSON = REOORD
I__NAME, F_NAME: ARRAY[1..20] OF CHAR;
AGE: 0..100;
SEX: (MALE, FEMALE);
MARRIED: BOOLEAN;
CASE BOOLEAN OF

TRUE: (SPOUSE_NAME: ARRAY[1..40] OF CHAR;
SPOUSE_AGE: 0..100)

END;

Although this is a valid example of a REOORD type definition, its
usage is not advised. The declaration of the tag-field in the CASE
clause and the definition of every possible value of the tag-field
as shown in Example 1 give better program readability.

Example 3:

TYPE
SHAPE = (POINT, LINE, CIRCLE);
FIGURE = REOORD

CASE TAG: SHAPE OF
LINE: (M, B: REAL);
CIRCLE: (A, C: REAL; RADIUS: REAL);
POINT: (Xo, Yo: REAL)

END;
VAR

V : FIGURE;
BEGIN

V.TAG := LINE;
TAG := LINE {This assignment is invalid.}

END.

S e c o n d E d i t i o n 6 - 2 4

DATA TYPES

Example 4:

TYPE
DATA = (INT, BOOL, CH);
DATATYPE = RECORD

CASE DATA OF
INT: (INTERVALUE: INTEGER);

BOOL: (BOCLVALUE: BOOLEAN) ;
CH: (CHVALUE: CHAR)

END;
VAR

DATAVALUE: DATATYPES-
BEGIN

DATAVALUE. INTERVALUE := 100;
WRITELN (DATAVALUE. INTERVALUE) ;
DATAVALUE.BOCLVALUE := TRUE;
WRITELN (DATAVALUE. BOOLVALUE) ;
DATAVALUE.CHVALUE := 'A'
WRITELN (DATAVALUE. CHVALUE) ;
WRITELN (DATAVALUE. INTERVALUE); {This will not output 100}

{because its storage space}
{has been overlaid with}
{DATAVALUE. CHVALUE}

END.

Example 5:

TYPE
EMPTY = REOORD {The record EMPTY contains no fields; therefore,}

END; {it has a null value.}

__gte

The CASE statement is discussed in Chapter 8.

The SET Type

A set is a collection of elements that are of the same data type,
termed the base type. A base type can be any scalar data type other
than REAL or LONGREAL. To create a SET type, use the following type I 19.1
d e fi n i t i o n : '

TYPE type-identif ier = SET OF base-type;

The type-identif ier is the name of a new SET type. You cannot have
more than 256 elements in a set in Prime Pascal. Example:

TYPE
LETTERS = SET OF 'A'..'Z'; {26 elements}

6 - 2 5 S e c o n d E d i t i o n

DOC4303-191

Variables of type LETTERS are declared in the variable declaration
part:

VAR
VOWELS, LIST, EMPTY, CH : LETTERS;

Similarly, a SET can also be declared this way:

VAR
VOWELS, LIST, EMPTY, CH : SET OF *A'..'Z';

Each variable above is a set whose members are chosen from the
alphabetic characters 'A' to 'Z'. Set members are set constants that
are always presented in a pair of square brackets []. Values of SET
constants can be assigned to the variables by following assignment
statements:

VOWELS := ['A', 'E', 'I', '0', 'U']; {Set members can be in}
C H : = [' B ' , ' C , ' A '] ; { a r b i t r a r y o r d e r . }

E M P T Y : = ' [] ; { A s e t m a y h a v e n o m e m b e r s }
{at all; it is called the}
{empty set.}

L I S T : = [' F ' . . ' P '] ; { I f t h e s e t m e m b e r s a r e }
{consecutive values of the}
{base type, only the first}
{and last need be specified}
{in subrange form.}

There are three SET operators that operate on sets to produce new sets:

+ Set union

Set difference
* Set intersection

The union of two sets is a set that contains all the members of both
sets. The difference is a set that contains all the members of the
first set that are not also members of the second set. The
intersection is a set that contains all the values that belong to both
sets. For example:

[•Q«] + ['P\ 'Q'] yields ['P', 'Q']

['A', 'B', 'E', 'F'] - ['B', 'C, 'D'] yields ['A', 'E', 'F']

['E', 'I', '0'] * ['A', 'E'] yields [*E']

S e c o n d E d i t i o n 6 - 2 6

DATA TYPES

There are five relational operators that compare sets — the four
standard relational operators plus the set relational operator IN. The
result of the comparison is a BOOLEAN value:

Equals

<> Does not equal

<= Is contained by

>= Contains

IN Is a member of

Examples:

['A', 'B'] = ['B', 'C] is FALSE

['A', 'B'] <> ['B', 'C] is TRUE

['B'] <= ['B', »C] is TRUE

[■A'..'Z'] >= ['M'..'S'] is TRUE

•I' IN ['A', 'E', 'I', »0', 'U'] is TRUE

•I' IN ['P', 'S', 'X'] is FALSE

The compiler will issue an error message when the SET operator IN is
used on a non-SET type. Operators and operations are discussed in 18.3
Chapter 7.

The FILE Type

A file is a collection or receptacle of data values that are external
to a program. The values within each file must be of the same data
type. Your Pascal program can take data from a file (called the input
file), process it, and output data to another file (called the output
file). These data files, which are PRIMOS files, can reside in your
directory.

Data values within files cannot be accessed at random. They must be
accessed sequentially, one at a time, in the order in which they appear
in the file.

You can declare FILE data types, and declare variables as files using
TYPE and VAR declarations. The format of the TYPE declaration is:

TYPE
type-identif ier = FILE OF base-type;

6 - 2 7 S e c o n d E d i t i o n

DOC4303-191

The format of the VAR declaration is:

VAR
file-identifier : FILE OF base-type;

The base-type specifies the data type of data values in the file. It
must not be a FILE type or a structured type with a FILE component.
The type-identifier is the name of the new FILE data type. The
file-identifier is the name of the file. For example:

TYPE
INTBGERFILE = FILE OF INTEGER; {A sequence of internal binary}

{integers}

ARR = ARRAY[1..15] OF REAL;
ARRAYFILE = FILE OF ARR; {A sequence of groups of 15}

{internal binary real numbers}

CHARFILE = FILE OF CHAR; {A sequence of characters —}
{a textf ile}

| Using these new FILE types you can declare:
VAR

I: INTBGERFILE; {The FILE type of each variable has already}
A: ARRAYFILE; {been defined in the previous example.}
C: CHARFILE;

You can declare file variables directly, without creating your own FILE
data types, by saying:

TYPE
AR = ARRAY[1..15] OF REAL;

VAR
I : FILE OF INTEGER;
A : FILE OF AR;
C : FILE OF CHAR;

There are five Input/Output procedures — RESET, REWRITE, GET, PUT, and
CLOSE — and one BOOLEAN function, EOF (End-Of-File), that manipulate
files. Five other I/O procedures — READ, READLN, WRITE, WRITELN, and
PAGE — and another BOOLEAN function, ECLN (End-Of-Line), manipulate
textf iles (FILE OF CHAR), although READ and WRITE work on nontextf iles
as well. Explanations of all of these procedures and functions, as
well as complete information on Input/Output in Prime Pascal, are given
in Chapter 10.

S e c o n d E d i t i o n 6 - 2 8

DATA TYPES

The TEXT File Type: There is a standard Pascal data type called TEXT.
The TEXT type is a FILE type that is identical to FILE OF CHAR. Both
TEXT and FILE OF CHAR are "textfiles" or files consisting of printable
characters, including integers and real numbers. The following
declarations, therefore, are identical:

VAR
A : FILE OF CHAR;

VAR
A : TEXT;

The following are also identical:

TYPE
A = FILE OF CHAR;

TYPE
A = TEXT;

A TEXT file or a FILE OF CHAR should not be confused with FILE OF
INTEGER and FILE OF REAL, which are files composed of internal binary
numbers, rather than printable characters.

A textf ile may be subdivided into variable length lines. Each line in
the file is separated from the next ty the ASCII control character LF
(Line Feed).

Note

Textf iles have a maximum of 256 characters per line.

PRIMOS Files Versus the Terminal: Files are usually thought of as
PRIMOS files, where data can be read from or written out to a file that
is in your directory. The data, however, can also be read from and
written to your terminal. That is, the terminal itself is considered a
data receptacle or "terminal" file. Upon execution of your program,
you supply the data input at your terminal, and the computer can
respond by sending back the data output to your terminal.

6 - 2 9 S e c o n d E d i t i o n

DOC4303-191

If you want to read and write data at your terminal, simply use READ,
REAELN, WRITE, and WRITELN statements. You do not have to declare any
FILE types. For example:

PROGRAM Terminal;
VAR

A : ARRAY[1..10] OF CHAR;
B : ARRAY[1..20] OF CHAR;

BEGIN
READLN(A) ;
REAELN(B) ;
WRITELN (A) ;
WRITELN (B)

END.

Upon execution of this program, the computer will wait for you to type
in a 10-character string and a 20-character string on separate lines
(ended by carriage returns). When it has the two strings, the computer
will send them back to your terminal.

In Prime Pascal, if you want to read and write data to or from a PRIMOS
textf ile, you must not only declare a file to be TEXT or FILE OF CHAR,
but also supply the name of the file in the RESET and REWRITE
procedures. The naming of textfiles is a Prime extension. For
example:

VAR
CH : CHAR;
INFILE, OUTFILE : TEXT;

BEGIN
RESET (INFILE, ' INDATA');
REWRITE (OUTFILE, 'OUTTATA');
READ (INFILE, CH);
WRITE (OUTFILE, CH);
CLOSE (INFILE) ;
CLOSE (OUTFILE)

END.

In the example above, RESET and REWRITE open the textfiles called
INDATA and OUTDATA, which must be enclosed in single quotes. Read and
write statements associate INFILE and OUTFILE with the actual names of
the files, INDATA and OUTEATA. The CLOSE statements must be used to
close the textfiles at the end of your program. For a complete
explanation of RESET, REWRITE, and CLOSE, as well as other I/O features
of Prime Pascal, see Chapter 10.

S e c o n d E d i t i o n 6 - 3 0

DATA TYPES

The Standard Textfiles INPUT and OUTPUT: Pascal has two standard
textfiles, INPUT and OUTPUT. When you want to use PRIMOS data files,
you do not have to declare INPUT and OUTPUT as TEXT or FILE OF CHAR.
However, in the RESET and REWRITE statements, you must still give the
name of the file. In the following example, the standard textfiles
INPUT and OUTPUT are associated with two PRIMOS data files called
INDATA and OUTDATA. Notice that INPUT and OUTPUT need not be declared
as FILE OF CHAR:

PROGRAM Primef ile;
VAR

CH : CHAR;
BEGIN

RESET (INPUT, 'INDATA');
REWRITE (OUTPUT, 'OUTDATA');
WHILE NOT E0LN(INPUT) DO

BEGIN
READ (INPUT, CH);
WRITE (OUTPUT, CH)

END;
END.

For more information on the standard textfiles INPUT and OUTPUT, as
well as Prime I/O procedures, see Chapter 10.

THE POINTER TYPE

A pointer is a type of variable that references or points to a storage
location, contrary to a scalar or structured type variable, which
already has been allocated its own location in memory.

A scalar or structured type variable is accessible by its identifier.
All the necessary memory is allocated for the variable at compile time.
The memory taken up ty the variable exists during the entire execution.
These variables are called static variables.

A variable accessed by a pointer, on the other hand, is created and
destroyed dynamically during the execution of the program.
Accordingly, this variable is called a dynamic variable.

Eynamic variables are not explicitly declared in variable declarations
and are not referenced by identifiers. Instead, they are referenced by
pointers. A pointer is the storage address of a newly created dynamic
variable, which is created by the predefined procedure NEW.

Pointer types are declared with this format:

TYPE type-identifier = ~base-type;

6 - 3 1 S e c o n d E d i t i o n

DOC4303-191

The type-identif ier is the name of a pointer (dynamic) data type whose
pointers will point to elements of the specified base-type. However,
there is a special pointer constant, termed NIL, which is always an
element of a pointer type and points to no element at all. Here is an
example of a pointer declaration:

TYPE
POINTER = "INTEGER;

VAR
P : POINTER;

P is a pointer that references or "points to" an element of the INTEGER
type. P* is the actual integer being pointed to. The difference is
important.

There are four procedures, called dynamic allocation
create and destroy dynamic variables:

procedures, that

NEW(P) Creates (or allocates) a new dynamic
variable. A pointer to this new variable
is assigned to the pointer variable P.

NEW(P, cl,...,cn) Creates (or allocates) a new dynamic
variable of RECORD type with variants. A
pointer to this new variable is assigned
to the pointer variable P. The variants
of the variable (tag-field) correspond to
the case-cons tan ts c l , . . . , cn . The
c a s e - c o n s t a n t s m u s t b e l i s t e d
contiguously and in the order of their
declaration. They must not be changed
during execution.

DISPOSE(P) Indicates that the storage occupied ty
the variable P* is no longer accessible.
That storage becomes available for future
use. P is then undefined. NEW(P) and
DISPOSE(P) are complementary.

DISP0SE(P, cl,...,cn) Indicates that the storage occupied by
P", which was allocated ty the second
form of NEW, is no longer accessible.
That storage becomes available for future
use. P is then undefined. The
case-constants of both procedures must be
identical.

Note

19.1 As of Rev. 19.1, Prime supports
(1024K words) of dynamic storage.

approximately 16 segments

Second Edition 6-32

DATA TYPES

Example 1:

PROGRAM POINTER_SAMPLE(INRJT, OUTPUT);
VAR

PTR : "INTEGER; {PTR is a pointer variable bound to}
{type INTEGER.}

I : INTEGER;
BEGIN

FOR I := 1 TO 10 DO

BEGIN
NEW (PTR); {Allocates a variable of type INTEGER}

{and stores its address in PTR.}
P T R " : = I ; { P T R " i s t h e a c t u a l v a r i a b l e b e i n g }

{pointed to. A value of I is assigned}
{to this new variable.}

DISPOSE (PTR) {Destroys the variable PTR" and returns}
{its storage for future use.}

END
END.

Example 2:

{This example creates a linked list (or a chain) to which elements
can be added or deleted at random. A linked list is essentially a
chain of REOORD elements, each of which has a POINTER field called
NEXT, which points to the next element in the chain.}

TYPE
LINK = "PERSON;
PERSON = REOORD

NEXT : LINK;
NAME : CHAR

END;
VAR

ROOT, P : LINK;
I : INTEGER;
CH : CHAR;

BEGIN
ROOT := NIL;
FOR I := 1 TO 50 DO

BEGIN
READ(CH);
NEW(P);
P".NAME := CH; {A name code is stored in NAME.}
P".NEXT := ROOT; {The sequence of these two statements}
ROOT := P {is a general algorithm for inserting}

{an element at the beginning of the}
{ l i s t . }

END;
END.

6 - 3 3 S e c o n d E d i t i o n

Expressions

An expression is a single operand or a combination of operands and
operators that are evaluated to produce a value.

OPERANDS

An operand may be any of the following expressions:

• A variable

• An unsigned or signed number

• A character string

• A constant identifier

• A function designator (explained in Chapter 9)

• NIL

• A set

7 - 1 S e c o n d E d i t i o n , U p d a t e 1

UTD4303-192

Here are some examples of valid operands

15

(x+y+z)

SIN(x+y)

tf__D, C, GREEN]

[1, 5, 10..19, 23]

NOT P

I * J + 1

-N

OPERATORS

Operators modify an operand or combine two operands. Operators can be
classified as ar i thmet ic , re lat ional , set , Boolean, in teger, or

I concatenation. (The concatenation operator and the integer operators
19,2 I are Prime extensions.)

Arithmetic Operators

An arithmetic operator specifies computation to be performed on its
operands to produce a single numeric value. Table 7-1 lists the binary
and unary arithmetic operators and the data types of operands and
resu l t s .

Second Edition, Update 1 7-2

EXPRESSIONS

Table 7-1
Arithmetic Operators

Binary Operators Type of Operands

+ (add)
- (subtract)
* (multiply)

INT^EX_ER/l_Ct̂ IOTEGER
REAL/LONGREAL

/ (divide) IMEGER/LONG INTEGER
REAL/LONGREAL

DIV (divide with
truncation)

INTEGER or
LONGINTEGER

MOD (modulus or
remainder)

INTEGER or
UMZWHEGER

Unary Operators

+ (identity)
- (sign-inversion) I1WEX_E_VL0NGINTEGER

REAL/LONGREAL

Type of Result

INTEGER/l-^fG INTEGER
if both operands are
INTEGE3VLCM5INTEGER;
otherwise REAL/LONGREAL

REAL/LCNGREAL

imeg_Vdong:cnteger

imegeVdonginteger

Same as operand

Relational Operators

The relational operators are used to compare values of data types —
scalar, STRING, ARRAY OF CHAR, pointer, or SET. In any given
comparison, both operands must be of the same type, except that INTEGER
can be compared with LONGEtfTEGER, and REAL with LONGREAL. The result
of the comparison is a EMOOLEAN value, TRUE or FALSE. Table 7-2 lists
the legal relational operators and data types of operands.

| 19.2

7-3 Second Edition, Update 1

UPD4303-192

19.2 |

19.2 |

19.2 |

19.2 |

Operator

<>

<
>

<=

<=

>=

>=

IN

Table 7-2
Relational Operators

Operation Type of Operands

equa l i t y
inequa l i t y

less than
greater than

less or equal

set inclusion
("is contained

i n ")

greater or equal

set inclusion
("contains")

set membership

SET, scalar, pointer, STRING, or
ARRAY OF CHAR

scalar, STRING, or ARRAY OF CHAR

scalar, STRING, or ARRAY OF CHAR

SET

scalar, STRING, or ARRAY OF CHAR

SET

first (left) operand is any
scalar type (except REAL and
LONGREAL), second (right)
operand is a set of that type

Here are some examples of relational operators,

First , let

x := ['A', 'D', 'C, 'B']

y := ['A', 'E']

then

x = ['A', 'B', 'C, 'D'] {true }

y < = x { f a l s e }

y < > x { t r u e }

' B ' I N x { t r u e }

Second Edition, Update 1 7-4

EXPRESSIONS

SET Operators

SET operators, listed below, operate on sets to produce new sets,

O p e r a t o r O p e r a t i o n

+ s e t u n i o n

set difference

* s e t i n t e r s e c t i o n

The union of two sets is a set that contains all the members of both
sets. The difference is a set that contains all the members of the
first set that are not also members of the second set. The
intersection is a set that contains all the values that belong to both
sets.

Here are some examples of SET operators.

F i rs t , le t

x := ['A', 'E', '0']

y := ['I', 'U', '0']

z := ['A', 'B']

then

w := x + y {wis ['A', 'E', 'I', '0', 'U']}

w := x - y {w is ['A', 'E']}

w := x * z {w is ['A']}

Note

Five relational operators, =, <>, <=, >=, and IN, also apply to
the SET data type; they produce BOOLEAN results. See
Relational Operators.

7 - 5 S e c o n d E d i t i o n

DOC4303-191

BOOLEAN Operators

Boolean operators operate on BOOLEAN values to produce a BOOLEAN
result, TRUE or FALSE. The operators are OR, AND, and NOT. In the
following examples, P and Q are of type BOOLEAN.

As these examples indicate, if P is true or Q is true, then the
expression P OR Q is true. If P is true and Q is true, then the
expression P AND Q is true. (These expressions would be false
otherwise.)

NOT Q negates the value of Q. If Q is true, then NOT Q is false. If Q
is false, then NOT Q is true.

The OR Operator

P Q P O R Q

F F F

F T T

T F T

T T T

The AND Operator

p Q P AND Q

F F F

F T F

T F F
T

Q

F

T

T

The NOT Operator

NOT Q

T

F

S e c o n d E d i t i o n 7 - 6

EXPRESSIONS

Integer Operators

The integer operators & and ! are Prime extensions. They perform
Boolean AND and OR operations on integers respectively. These
operators also work on longintegers. For example, if you wanted to
perform AND and OR operations on the two numbers 10 and 12, you could
say:

VAR
A,B,C,D : integer;

BEGIN
A := 10;
B := 12;
C := A & B; {AND operation}
D := A ! B; {OR operation}
WRITELN(C);
WRITELN (D);

END.

At the machine level, the two binary numbers that stand for decimal 10
and 12 are 1010 and 1100 respectively. (The 12 leading zeros are
omitted.) During the AND and OR operations, the digit 1 means TRUE and
0 means FALSE. The first digit of 1010 is compared with the first
digit of 1100, and so on, to produce new binary (and hence decimal)
numbers C and D. The machine, therefore, calculates:

1010 AND 1100 = 1000 {decimal 8}
1010 OR 1100 = 1110 {decimal 14}
C = 8
D = 14

Integer operators can be useful when you need a lot of Boolean TRUE and
FALSE values or "switches" that can be set to 1 (TRUE) or 0 (FALSE) in
the internal binary representation of any decimal number.

STRING Concatenation Operator

Prime Pascal's concatenation operator (+) concatenates two strings into
one. The concatenation operator is a Prime extension. There is no
concatenation operator in standard Pascal.

The concatenation operator works only on operands of the STRING data 19.2
type. The STRING type is also a Prime extension. (See Chapter 6.)

The resultant length of the newly formed string equals the sum of the
operational lengths of the two concatenated strings. Either or both of
the strings may be a character literal string, enclosed in single
quotes.

7 - 7 S e c o n d E d i t i o n , U p d a t e 1

EXPRESSIONS

Here is an example that uses concatenation operators:

VAR
ST2 : SIRING[2];
ST4 : STRING[4] ;
ST6 : STRING[6];
ST12 : STRING[12];

BEGIN
ST2 := 'PA';
ST4 := 'SCAL';
ST6 := ST2 + ST4;
ST12 := ST2 + ST4

END.

{value of ST6 is 'PASCAL'}
+ 'STRING' {value of _T12 is 'PASCALSTRING'}

19.2

7 -7A Second Ed i t i on , Upda te 1

UPD4303-192

OPERATOR PRECEDENCE

The precedence among operators determines the order in which
expressions are evaluated. The precedence of operators is as follows:

1. Operations in parentheses

2. NOT, unary - and +

3. *, /, DIV, MOD, AND, &

4. +, -, OR, !

5. =, <>, <, >, <=, >=f IN

Highest precedence
(done first)

Lowest precedence
(done last)

Order of Evaluation

When there are several operations at the same level of precedence, the
operations are performed from left to right.

Parentheses may be used to override the normal evaluation order. An
expression enclosed in parentheses is treated as a single operand, and
is evaluated first. When expressions are contained within a nest of
parentheses, evaluation proceeds from the innermost set to the
outermost set (inside out).

For example:

7 + A * 2 - 5 DIV 3 + A

2 1 4 3 5

{Numbers below the operators
indicate the order in which
the operations are performed.}

((7 + A) * 2 - 5) D I V 3 + A

1 2 3 4 5

Second Edition, Update 1 7-8

Statements

This chapter discusses the various types of executable statements in
Prime Pascal. These statements, which specify algorithmic actions,
comprise the executable part of a program.

SUMMARY OF STATEMENTS

The various types of Pascal statements are:

• Assignment Statement

• Procedure Statement

• Compound Statement

• Empty Statement

• Control Statements:

REPEAT
WHILE
FOR
I F
CASE
GOTO

• WITH Statement

8 - 1 S e c o n d E d i t i o n

DOC4303-191

ASSIGNMENT STgVTEMENT

An assignment statement assigns a value to a variable or a function
identifier. The form of the statement is:

variable | function-identifier := expression;

I The assignment operator := can be read "becomes" or "gets the value
I of". The expression on the right-hand side of the operator is

evaluated and the value obtained becomes the current value of the
variable or the functi on-identif ier on the left-hand side of the
operator.

A functi on- identif ier is a function name. Within the function block of
the function, it may apjpear on the left-hand side of the assignment
operator. (See Chapter 9.)

A variable is represented by its name. Variables on the left-hand side
of the assignment operator may or may not have been assigned values
previously.

For example, if the user has made the following declarations in a
program:

VAR
CH : CHAR;
R : REAL;
NUMBER, F, I, J, K : INTEGER;

then the following assignment statements are valid:

CH := '5';

NUMBER := ORD(CH) - ORD('O');

R := 123.3;

F := TRDNC(R) MOD 5;

I := F;

J := I + MJNBER;

K := J DIV 2;

I := SQR(K) - (I*J);

Assignment Compatibility

The data type of the expression on the right-hand side of the
assignment operator must be compatible with the data type of the
variable or function identifier cn the left-hand side.

S e c o n d E d i t i o n 8 - 2

STATEMENTS

The following are some guidelines for using assignment statements:

• The variable or function identifier and the expression must be
of compatible types.

• Neither the variable/function identif ier nor the expression
should be a FILE type or a structured type with a FILE element.

• The variable or function identifier can be of type REAL and the
expression can be of type INTEGER; however the converse is not
possible. (You can assign an integer to a real, but not a real
to an integer unless the TRUNC function is used.)

• The variable or function identifier can be of type LONGINTEGER
and the expression can be of type INTEGER, but the converse may
cause your program to fail. (You may assign an integer to a
longinteger, but a longinteger will be truncated when assigned
to an integer.) This rule also applies to REAL and LONGREAL for
the same reason.

• Any element, group of elements, or expression that is of a
particular SET type must be assigned to a variable or function
identifier of the same SET type.

• The variable or function identifier and expression can be type
ARRAY OF CHAR as long as both arrays have the same number of
elements.

• The variable or function identifier and expression can be
subranges of each other.

PROCEDURE STATEMENT

A procedure statement activates the execution of a procedure. A
procedure is a subprogram, which is declared in the main program.

The format of the procedure statement is:

procedure- ident ifier [(parameter - l i s t)] ;

The procedure-identifier is the name of the procedure. When the
procedure statement is encountered in the main program, the procedure
is executed. The parameter-list is optional. If you want to pass
values to and from the main program and the procedure, you would use
parameters. The parameter-list is enclosed in parentheses, and the
parameters are separated by commas.

8 - 3 S e c o n d E d i t i o n , U p d a t e 1

UID4303-192

Here are some examples of procedure statements:

PRINTHEADING;

TRANSPOSE (A, N,M);

BISECT (FCT, -1.0, +1.0, X) ;

For more information on procedures and functions, including external
procedures and functions, see Chapter 9.

COMPOUND STATEMENT

A compound statement is a sequence of statements ^ separated by
semicolons. The general form of a compound statement is:

BEGIN
statement-1 ; statement-2;...[statement-n]

END;

The keywords BEGIN and END must designate the start and the end of the
sequence of a compound statement. They are not statements themselves.
BEGIN and END should not be used on a single statement, statement-1,
statement-2, etc. can be any Pascal statements. A compound statement
can appear anywhere a single statement is allowed.

Example 1:

BEGIN
Z := X;
X := Y;
Y := Z

END;

Example 2:

IF FLPG = 1 THEN
BEGIN

COUNTER := 0;
READ (CHARACTER) ;
WHILE (CHARACTER <> BLANK) DO

BEGIN
COUNTER := COUNTER + 1;
READ (CHARACTER)

END;
WRITELN (' THE NUMBER OF CHARACTERS = ', O0UOTER)

END
ELSE

FLAG := 0;

Second Edit ion, Update 1 8-4

STATEMENTS

It is not necessary to place a semicolon after the statement that
precedes the END delimiter. END is part of the compound statement, not
a statement in itself. The use of a semicolon will generate an empty
statement.

EMPTY STATEMENT

An empty statement denotes no action and, as its name implies, consists
of no letters, digits, or punctuation symbols. Using hypothetical
statements sl, s2, and s3, two examples follow.

Example 1:

CASE DAYS OF
SUN: ; {An empty statement is right here.}
MON, WED, FRI: sl;
TUE, THUR: s2;
SAT: S3

END;

Example 2:

BEGIN
READ(CH);
WRITE (CH); {The semicolon separates the WRITE procedure from}

END; {the END so an empty statement precedes the END.}

CONTROL STATEMENTS

Statements are normally executed in the order of their appearance in a
program unit. However, it is often necessary to interrupt the normal
processing of statements for a special purpose, such as the repeated
processing of a sequence of statements or the execution of one group of
statements as opposed to another. Control statements are used to alter
the normal sequential execution of statements.

There are three types of control statements: repetitive statements,
conditional statements, and unconditional statements.

Note

Control statements that are enclosed within other control
statements are called "nested statements" and "nested loops".
In the discussions that follow, some examples of nested control
statements are given.

8 - 5 S e c o n d E d i t i o n

DOC4303-191

Repetitive Statements

A repetitive statement specifies that a certain group of statements is
to be executed repeatedly. This repetition is called a loop. There
are three types of repetitive statements — REPEAT, WHILE, and FOR.

REPEAT Statement: The form of the REPEAT statement is:

REPEAT statement-1 [; statement-2...] UNTIL boolean-expression;

The statement (or the sequence of statements) between the keywords
REPEAT and UNTIL is executed repeatedly until the toolean-expression
becomes true. The statement (or statement sequence) will be executed
at least once, because the Boolean-expression is evaluated at the end
of the cycle.

Example 1:
SPACE := ' ';
REPEAT

READ(CH);
WRITELN (CH)

UNTIL CH = SPACE;

Example 2:

REPEAT
K := I MOD J;
I := J;
J := K

UNTIL J = 0;

It is not necessary to place a semicolon after the statement that
immediately precedes UNTIL, because UNTIL is part of the statement, not
a statement itself.

Note

In a REPEAT loop, the beginning and the end of the statements
to be executed repeatedly are marked ty the keywords REPEAT and
UNTIL. Therefore, it is not necessary to use the keywords
BEGIN and END to bracket the statement sequence. However, if
BEGIN and END are used, it is not wrong, just redundant.

S e c o n d E d i t i o n 8 - 6

STATEMENTS

WHILE Statement: The form of the WHILE statement is:

WHILE boolean-expression DO statement;

The statement, which may be any statement (including a compound
statement), is executed repeatedly while the boolean-expression is
true. The boolean-expression is evaluated at the beginning of each
cycle. If its value is false initially, the statement will not be
executed at all.

Example 1:

WHILE A[I] <> X DO
I := I + 1;

Example 2:

WHILE I>0 DO
BEGIN

IF ODD(I) THEN
Z := Z * X;

I := I DIV 2;
X := SQR(X)

END;

Example 3:

WHILE NOT EOF (INPUT) DO
BEGIN

WHILE NOT ECLN(INPUT) DO
BEGIN

READ (INPUT, CH);
WRITE (OUTPUT, CH)

END; {inner WHILE loop}
REAELN(INPUT)

END; {outer WHILE loop}

Example 3 illustrates a loop within a loop or a nested loop.

8 - 7 S e c o n d E d i t i o n

DOC4303-191

A loop controlled by WHILE may be converted into a loop controlled by
REPEAT. For example, the WHILE statement:

WHILE b DO body;

is equivalent to:

IF b THEN
REPEAT

body
UNTIL NOT(b)

FOR Statement: A FOR statement causes a statement to be executed a
specified number of times while a progression of values is assigned to
a variable called the control variable of the FOR statement.

The general form of a FOR statement is:

FOR control-var iable := initial-value TO final-value
DO statement;

The alternative form (for decreasing initial value) is:

FOR control-variable := initial-value DOWNTO final-value
DO statement;

The control-variable is increased to or decreased down to the next
value in the loop. It counts, and therefore controls, the number of
times the statements are executed.

The statement constitutes the body of the FOR loop. It may be any
statement, including a compound statement.

The control-var iable is of any scalar type (except REAL or LONGREAL).
The initial-value and the final-value must be of a type compatible with
the control-variable's type. Upon completion of the FOR statement, the
control-variable is undefined.

When the FOR-TD form is used, the control-variable is tested to
determine whether it is less than or equal to the final-value. If it
is, the statement is executed, the control-variable is incremented by
1, and the cycle is repeated. If the elements of an enumerated type
are being incremented, then the control-var iable gets the value of the
contr ol-variable's successor.

In the FOR-DOWNTO form, the control-variable is tested to determine
whether it is greater than or equal to the final value. If it is, the
statement is executed, the control-variable is decremented by 1, and
the cycle is repeated.

S e c o n d E d i t i o n 8 - 8

STATEMENTS

Here are some examples of FOR loops:

Example 1:

FOR I := 1 TO 20 DO
BEGIN

READ(A[I]);
WRITE (A [I])

END;

Example 2:

FOR I := 2 TO 63 DO
IF A[I] > MAX THEN

MAX := A[I];

Example 3:

FOR C := RED TO BLUE DO
WRITELN (ORD (C)) ;

Example 4:

FOR J := K DOWNTO 1 DO
SUM := SUM + J;

Example 5:

FOR linenumber := 1 TO 20 DO
BEGIN

WRITE(linenumber);
FOR I := 1 TO 60 DO

BEGIN
READ(CH);
WRITE (CH)

END; {inner FOR loop}
REAELN;
WRITELN

END; {outer FOR loop}

Example 5 above contains a nested FOR loop.

8 - 9 S e c o n d E d i t i o n

DOC4303-191

Conditional Statements

A conditional statement selects one of a number of alternate courses of
action based upon the evaluation of a certain condition. There are two
types of conditional statements — IF and CASE.

IF Statement: The form of an IF statement can be either:

IF boolean-expression THEN statement-1;

or

IF boolean-expression THEN statement-1 ELSE statement-2;

where statement-1 and statement-2 may be any statement, including a
compound statement.

When the IF-THEN form is used, statement-1 is executed only if the
boolean-expression is true. Otherwise, statement-1 is bypassed and the
next sequential statement is executed.

The IF-THEN-ELSE form allows the selection of one of two statements
depending upon the value of the boolean-expression. If the
boolean-expression is true, statement-1 is executed and statement-2 is
bypassed. If the boolean-expression is false, statement-1 is bypassed
and statement-2 is executed.

After the execution of the IF statement, control is passed to the next
sequential statement.

Examples:

IF A > B THEN
WRJTELN(' A IS GREATER THAN B.');

IF X < 1.5 THEN
BEGIN

Z := X + Y;
WRITELN (Z)

END
ELSE

Z := 1.5

Never put a semicolon immediately before ELSE because ELSE is not a
statement. It is part of the IF statement.

An IF statement is nested within another IF statement whenever it
appears as statement-1 or statement-2 or as part of statement-1 or
statement-2. In these cases, any ELSE encountered must be paired with
the immediately preceding IF, which has not been already paired with an

S e c o n d E d i t i o n 8 - 1 0

STATEMENTS

ELSE. The number of ELSEs in a nested IF structure need not be the
same as the number of IFs. Here are two examples of nested IF
statements:

Example 1:

IF X > 0 THEN
IF Y > THEN

Y : = Y + 1
ELSE

X : = + l;

Example 2:

IF A < C THEN
IF C < THEN

X : =
ELSE
IF A < THEN

IF B D THEN
X : =

ELSE
X > ~~

ELSE
IF A < D THEN

IF B C THEN
X ..=

ELSE := 5
ELSE X : == 6

ELSE X := 7;

CASE Statement: A CASE statement can be a much more efficient way to
do multiple IF statements. A CASE statement is used to select one of a
group of statements for execution depending on the value of an
expression. The general form of a CASE statement is:

CASE expression OF
case-constant-list-1 : statement-1;

case-constant-list-n : statement-n
[; OTHERWISE statement]

END;

If the value of the expression matches any of the case-constants, then
the statement or group of statements that corresponds to that
case-constant is executed.

8 - 1 1 S e c o n d E d i t i o n

DOC4303-191

The expression can be of any scalar type, except REAL and LONGREAL.
Mult iple constants in a l ist are separated by commas. The
case-constants can be written in any order.

Any statement, including a compound statement, may be controlled by a
CASE statement.

Example 1:

VAR
OPERATOR : (PLUS, MINUS, TIMES) ;
X, Y : INTEGER;

BEGIN
CASE OPERATOR OF

PLUS : := X + Y;
MINUS: := X - Y;
TIMES: := X * Y

END
END.

Example 2:

TYPE
DAYS = (SUN,MON,TUE,WED,THUR,FRI,SAT);

VAR
TODAY,TOMORROW,YESTERDAY : DAYS;

BEGIN
FOR TOE&Y := SUN TD SAT DO

BEGIN
CASE TOEAY OF

SUN : BEGIN YESTEREAY := SAT ; TOMORROW := MON END;
SAT : BEGIN YESTERDAY := FRI ; TOMORROW := SUN END;
MON, TUE, WED, THUR, FRI:

BEGIN
YESTERDAY := PRED(TOr_AY) ;
TOMORROW := SUCC (TODAY)

END
END; {CASE statement}

WRITELN ('TODAY', ORD(TOEAY), ' TOMORROW', ORD (TOMORROW),
' YESTERDAY*, ORD (YESTERDAY))

END {FOR statement}
END.

S e c o n d E d i t i o n 8 - 1 2

STATEMENTS

Example 3:

TYPE
WEEKDAYS = (SUN,

FRI,
VAR

DAYS : WEEKDAYS;
BEGIN

CASE DAYS OF
SUN, SAT : ;

MON,
TUE,

WED,
THUR

FRI

MON, TUE, WED, THUR,
SAT) ;

{Since there is no action required for
SUN and SAT, the space before the
semicolon is an empty statement
producing no action.}

: statement-1;
statement-2

END
END.

When the CASE statement is executed, the expression must match one of
the constant values; otherwise, the effect of the CASE statement is
undefined.

However, you can use the OTHEE_VISE clause to execute an alternative
statement, or group of statements, if no other statement in the
case-constant list has been selected.

The OTHERWISE clause option is a Prime extension. OTHERWISE is a Prime
keyword. This clause, if present, must immediately precede the keyword
END, which terminates the CASE statement. For example:

VAR
I : 1..20

BEGIN
CASE I OF

1,20 : statement-1;
4 : statement-2;

5,7,9 : statement-3;
3,11,17 : statement-4;
OTHERWISE statement-5
END

END.

8-13 Second Edition

DOC4303-191

In standard Pascal, the function of the OTHERWISE clause can be
achieved by combining the standard CASE statement and an IF statement.
The previous example of the OTHERWISE clause may be rewritten in
standard Pascal as:

VAR
I : 1.-20;
IF I IN [1,3,4,5,7,9,11,17,20] THEN

CASE I OF
1,20 : statement-1;

4 : statement-2;
5,7,9 : statement-3;

3,11,17 : statement-4
END

ELSE
statement-5;

Note

The CASE statement is different from the CASE clause in the
variant part of a record. The CASE clause is discussed in
Chapter 6.

Unconditional Statement

GOTO Statement: A GOTO statement is an unconditional statement that
transfers control to the statement designated by the label, without
testing or satisfying any condition. The form of the GOTO statement
i s :

GOTO label;

The label is an unsigned integer, which can be up to four digits long.
You must declare the label prior to its appearance in the GOTO
statement. The designated statement must be prefixed with the integer
followed by a colon.

There are some restrictions on the use of a GOTO statement. A GOTO
statement can transfer control within a block, or from an inner block
to an outer block; it cannot transfer control from an outer block to
an inner block. In particular, a GOTO statement may transfer control
out of a subprogram (procedure or function), but not into one.

S e c o n d E d i t i o n 8 - 1 4

STATEMENTS

Example 1:

LABEL 10; {DATA} ...
PROCEDURE PI;

LABEL 20, 30; ...
BEGIN ...
20: IF sl THEN GOTO 30;

GOTO 20;
30: s5;

IF S7 THEN GOTO 10
END; {PI}

BEGIN {DATA} ...
10: s9; {A "GOTO 20" or "GOTO 30" is not}

{permitted in DATA.}

Example 2:

{This is an invalid example.}

PROGRAM Main;
PROCEDURE P;

BEGIN
5 : sl

END; {Of procedure P}
BEGIN {main}

GOTO 5; {Transferring control to an inner block}
{is not permitted.}

•

END. {Of program Main}

Note

In general, GOTO statements make a program algorithm hard to
understand, and their use is discouraged. Therefore, a GOTO
statement should be used only when it cannot be easily replaced
by other available Pascal statements.

8 - 1 5 S e c o n d E d i t i o n

DOC4303-191

WITH STATEMENT

A particular field of a record is normally accessed by using both the
name of the record and the name of the field, separated by a period.
(See Chapter 6.)

However, if a field is accessed many times, the WITH statement can
simplify this access by indicating the record variable name only once.

The form of a WITH statement is:

WITH record-variable-1 [,record-variable-2...]
DO statement;

This form is equivalent to:

WITH record-variable-1 DO
[WITH record-variable-2 DO]...statement

The statement may be any statement, including a compound statement.
Within the statement, fields may be referred to only by field
identifiers. For example:

WITH DATE DO
IF MONTH = 12 THEN

BEGIN
MONTH := 1;
YEAR := YEAR + 1

END
ELSE MONTH := MONTH + 1;

This is equivalent to:

IF DATE.MONTH = 12 THEN
BEGIN

DATE.MONTH := 1;
DATE.YEAR := DATE.YEAR + 1

END
ELSE DATE.MONTH := DATE.MONTH + 1;

S e c o n d E d i t i o n 8 - 1 6

Procedures and
Functions

In addition to the main program, a Pascal program may contain a number
of procedures and funct ions that can be co l lect ive ly ca l led
subprograms. In Prime Pascal, a subprogram has the following features:

• A subprogram can be at most 64K words (128 bytes) in size.

• Values, called parameters, can be passed to and used by
subprograms.

• Subprograms themselves can be passed as parameters to other
s u b p r o g r a m s . 1 9 . 1

• A subprogram can be separated from the main program (external
subprogram) or embedded within the main program.

• Before it is fully defined, a subprogram can be referenced by
other subprograms within the same Pascal program. However, the
referenced subprogram must have been declared using the POFWARD
a t t r i b u t e .

• An external, separately compiled subprogram can be written in
any Prime supported language. If the subprogram is declared in
a Pascal program using the EXTERN attribute, the subprogram can
be referenced from any point within the Pascal program. (See
Appendix D for more information on interfacing Pascal with other
languages.)

• A subprogram can call itself. This process is called recursion.

9 - 1 S e c o n d E d i t i o n

DOC4303-191

This chapter discusses how to declare, invoke, and manipulate
subprograms, and presents the following topics:

• Parameters

• Procedures

• Functions

• Forward procedures and functions

• External procedures and functions

• Recursive procedures and functions

PARAMETERS

Parameters allcw information to be passed between the calling programs
and the called programs. There are two kinds of parameters — actual
and formal.

Actual Parameters

An actual parameter, appearing in a subprogram call (procedure
statement or function designator), is a variable whose location or
value is passed to the formal parameter in the corresponding position
in the called procedure or function heading. The actual parameters
must agree in order, number, and data type, but not necessarily in
name, with the formal parameters. For example, the following procedure
statement has three actual parameters (X, Y, and I) that are passed to
the procedure PLOT:

PLOT(X, Y, I);

Formal Parameters

Formal parameters are "placeholders" for the actual parameters. They
mark the places where the values of the actual parameters are to be
passed. Formal parameters are declared in the formal parameter list of
a procedure or function heading. This list specifies the order,
number, and data type of the corresponding actual parameters.

For example, the following procedure heading has three formal
parameters (A, B, and J) that mark the "spots" or "places" where the
values of the actual parameters are to be passed:

PROCEDURE PLOT (A, B : REAL; J : INTEGER) ;

S e c o n d E d i t i o n 9 - 2

PROCEDURES AND FUNCTIONS

In standard Pascal, there are four kinds of formal parameters — value,
variable, procedure, and function. (Procedures and functions can be
passed as parameters. Passing procedures and functions is discussed
later in this section.)

Value Parameters: If a formal parameter is not preceded ty the keyword
VAR, then it is a value parameter.

A value parameter is a variable that receives the value of its
corresponding actual parameter from the procedure statement. When the
subprogram is called, the value is passed to this variable so that the
procedure can use this value to perform its operations. However, the
value is never passed back to the main program. A value parameter is
also known as a pass-by-value parameter.

When the subprogram is called, the current value of the actual
parameter is passed to the variable. Although the subprogram can
change the value in its operations, the subprogram does not change the
value of the actual parameter in the calling program. Therefore, when
the values of actual parameters need to be protected, value parameters
are used. For example:

PROGRAM Parameters (OUTPUT) ;
VAR

A, B : INTEGER;
PROCEDURE VALUE_PAR(I, J : INTEGER);

BEGIN
I := I + 1; {I = 2}
J := J + 2; {J = 3}
WRITELN(I, J)

END; {Procedure VALUE_PAR}
BEGIN {main program}

A := 1; B := 1;
VALUE_PAR(A,B) ;
WRITELN (A, B) {A=l, B=l}

END.

In the above example, each of the variables A and B has an integer
value of 1. These values are passed to the variables I and J
respectively. The values of I and J change to 2 and 3 when the
procedure is executed, but the values of A and B remain at 1.

The data type of the value parameter must be compatible with the data
type of the corresponding actual parameter.

Variable Parameters: If a formal parameter is preceded by the keyword
VAR, then it is a variable parameter.

9 - 3 S e c o n d E d i t i o n

DOC4303-191

A variable parameter is also a variable that receives the value of its
corresponding actual parameter. Unlike the value parameter, however,
the variable parameter also causes changes to the actual parameter.
That is, the value of the variable parameter and its address are parsed
back to the calling program. (Values of value parameters can pass only
from the calling program to the subprogram.)

Variable parameters are also known as rass-bv-reference parameters
because only variables can be passed to the subprogram.

Here is an example of using variable parameters:

PROGRAM Parameters (OUTPUT) ;
VAR

A, B : INTEGER;
PROCEDURE VAR_PAR(VAR I : INTEGER; : INTEGER);

{I is variable parameter}
{J is a value parameter.}

BEGIN
I := I + 6; {I = 7}
J := J + 3 {J = 4}

END; {Procedure Var_Par}
BEGIN {main program}

A := 1;
B := 1;
VAR_PAR(A, B);
WR_TELN(A, B) {A = 7; B = 1}

END.

Caution

Do not pass a constant, another expression, or a function call
to a variable parameter, or a compile time error will be
generated. The following example is invalid:

PROGRAM Main; ...
PROCEDURE VAR_PAR(VAR X : INTEGER) ;

BEGIN ... END;
BEGIN

VAR_PAR(10); {This will generate a compile-time error}

END.

| Constants and expressions can be passed to value parameters, however.

S e c o n d E d i t i o n 9 - 4

PROCEDURES AND FUNCTIONS

ARRAY or REOORD Type Variable Parameters: The Prime Pascal compiler
produces two types of object code. Ordinary code can address only
within a segment. Boundary-spanning code can address across the
boundary between one segment and the next.

Whenever an array or record extends across a segment boundary, all
references to it must consist of boundary-spanning code. All
references in the program to any array or record the compiler knows to
be longer than a segment will automatically be compiled with
boundary-spanning code. No special action is required of the user in
this case.

However, when an ARRAY or RECORD type variable parameter appears in a
subprogram, the compiler has no way of knowing the storage status of
any corresponding ARRAY or REOORD type actual parameter when the
subprogram is invoked. Therefore, the compiler cannot know whether to
compile references to that variable parameter with ordinary or
boundary-spanning code. You must inform the compiler of the correct
action in this case, through use of the -BIG/-N0BIG compiler options.

When a subprogram is compiled without -BIG (-NOBIG is the default),
ARRAY or REOORD type variable parameter references will generate
ordinary code; the corresponding ARRAY or REOORD type actual parameter
must then be contained within one segment.

When a subprogram is compiled with -BIG, all references it makes to any
ARRAY or REOORD type variable parameter will generate boundary-spanning
code; the corresponding ARRAY or REOORD type actual parameter may then
span a segment boundary, though it need not do so.

Boundary-spanning code executes more slowly than ordinary code because
it performs more complex address calculations. The -BIG option should
therefore not be used unnecessarily.

Caution

Arrays or records associated with value parameters must not
span segment boundaries. The following example is invalid:

TYPE
LCNGARRAY = ARRAY[-32767..32767] OF REAL;

PROCEDURE X(A: LONGARRAY) ;

9-5 Second Edition

DOC4303-191

Procedures and Functions as Parameters

In Pascal, you can declare and pass a procedure or function as a
parameter. Any procedure or function can pass any other procedure or
function as a parameter.

Declaring Procedures and Functions as Parameters: A procedure or
function declaration must list another procedure or function as a
formal parameter. For example:

PROCEDURE A (PROCEDURE X) ;

If the procedure or function that is being passed has parameters of its
own, the number and types of parameters must also be listed. For
example:

PROCEDURE A (PROCEDURE X(X1, X2 : INTEGER));

If you are passing a function, the type that the function returns must
also be given:

19.1 PROCEDURE A (FUNCTION Y(Y1, Y2 : INTEGER) : INTEGER);

A procedure or function parameter can even have other procedures and/or
functions as parameters:

PROCEDURE A (FUNCTION Y (PROCEDURE Yl;
FUNCTION Y2 : CHAR) : INTEGER) ;

The procedure or function that is declared must match — parameter for
parameter, in number and type — the declaration for the procedure or
function that is passed.

Passing Procedures and Functions as Parameters: The name of a
procedure or function is passed the same way any variable is passed.
For example:

ADD(SORT);

The procedure named SORT is passed to a procedure named ADD. The name
SORT is passed without parameters, but the number and type of
parameters declared in the SORT procedure must match those in the ADD
declaration, parameter for parameter.

S e c o n d E d i t i o n 9 - 6

PROCEDURES AND FUNCTIONS

Here are some examples:

Example 1:

VAR
I : INTEGER;

PROCEDURE ADD1;
BEGIN {procedure ADD1}

I := I + 1;
END;

PROCEDURE CALLPROC (PROCEDURE X) ;
BEGIN {procedure CALLPROC}

X;
END;

BEGIN {main program}
I := 0;
CALLPROC (ADD1)

END. {I = 1}

Example 2:

VAR
I : INTEGER;

EUNCTION ADD10 : INTEGER;
BEGIN {function ADD10}

ADD10 := 10
END;

EUNCTION CALLF (FUNCTION X : INTEGER) : INTEGER;
BEGIN {function CALLF}

CALLF := X + X
END;

BEGIN {main program}
I := CALLF(ADD10)

E N D . { I = 2 0 } |

19.1

9 - 7 S e c o n d E d i t i o n

DOC4303-191

Example 3:

INTEGER) : INTEGER;

VAR
I, J : INTEGERS-

FUNCTION SQUARE (X : INTEGER) : INTEGER;
BEGIN {function SQUARE}

SQUARE := X * X
END;

FUNCTION PCALLEUNC (FUNCTION Z (R : INTEGER)
BEGIN {function PCALLEUNC}

FCALLEUNC := Z(5)
END;

PROCEDURE PCALLEUNC (FUNCTION Y(Q : INTEGER) : INTEGER);
BEGIN {procedure PCALLEUNC}

I := Y(5)
END;

BEGIN {main program}
J := FCALLEUNC (SQUARE) ;
PCALLEUNC (SQUARE)

END. {I = 25 and J = 25}

19.1
Example 4:

VAR
I, J, K : LONGINTEGER;

PROCEDURE ADD(X : LONGINTEGER);
BEGIN {procedure ADD}

I := I + X
END;

FUNCTION FCALLPROC(PROCEDURE Z(R : LONGINTEGER)) : LONGINTEGER;
VAR

R : REAL;
BEGIN {function FCALLPROC}

R := 2.19;
Z(ROUND(R)); {result of function call is passed}
FCALLPROC := 10

END;
PROCEDURE FCALLPROC (PROCEDURE Y(Q : LONGINTEGER));

BEGIN {procedure FCALLPROC}
Y(8) ;
J := 10

END;
BEGIN {main program}

I := 0;
K := FCALLPROC (ADD) ;
PCALLPROC(ADD)

END. {I, J, and K each = 10}

Second Edition 9-8

PROCEDURES AND FUNCTIONS

Example 5:

VAR
I, J : INTEGER;

PROCEDURE ADD2(PROCEDURE Al);
BEGIN {procedure ADD2}

A l ;
A l

END;
PROCEDURE ADD1;

BEGIN {procedure ADD1}
I := I + 1

END;
PROCEDURE CALLPROC (PROCEDURE X (PROCEDURE Y); PROCEDURE Z) ;

BEGIN {procedure CALLPROC}
Z;
X(Z)

END;
BEGIN {main program}

I := 0;
CALLPROC (ADD2, ADD1)

END. {I = 3}

Note

A procedure or function cannot be a variable parameter. For
example:

PROCEDURE X (VAR PROCEDURE Y); { th is is i l legal} 19 '2

Any attempt to use a procedure or function as a variable
parameter will cause the VAR to be ignored and a severity 2
error to be given.

PROCEDURES

A procedure is a user-written independent program unit that performs a
set of operations. A procedure must be declared in a procedure
declaration, a forward procedure declaration, or an external procedure
declaration before the procedure can be called by a procedure
statement.

Procedure declarations are discussed below. Forward and external
procedure declarations are discussed later in this chapter.

The external procedure declaration is a Prime extension to standard
Pascal.

9 - 9 S e c o n d E d i t i o n , U p d a t e 1

PROCEDURES AND FUNCTIONS

Procedure Declarations

A procedure declaration defines and names a procedure. The form of a
prooedure declaration is:

PROCEDURE identifier [(formal-parameter-list)]; block;

The keyword PROCEDURE begins a procedure declaration. The identifier
is the name of the procedure. The list of formal parameters, if any,
enclosed in parentheses, specifies the name of each formal parameter
followed by its type-identifier. If you choose to use them, parameters
can be passed by value or by reference to the subprogram. Parameters
are discussed earlier in this chapter.

9-9A Second Edit ion, Update 1

UPD4303-192

Procedure Declarations

A procedure declaration defines and names a procedure. The form of a
procedure declaration is:

PROCEDURE identifier [(formal-parameter-list)]; block;

The keyword PROCEDURE begins a procedure declaration. The identifier
is the name of the procedure. The list of formal parameters, if any,
enclosed in parentheses, specifies the name of each formal parameter
followed by its type-identifier. If you choose to use them, parameters
can be passed by value or by reference to the subprogram. Parameters
are discussed earlier in this chapter.

Except in forward or external declarations, the procedure heading
described above is immediately followed by the procedure block.

A procedure block has the same general form as a program block. It may
conta in dec la ra t ions fo r labe ls , cons tan ts , t ypes , var iab les ,
procedures, and functions and a sequence of executable statements
surrounded by a BEGIN and END pair. However, the procedure block ends
with a semicolon instead of a period.

Unlike a function, the name of a procedure must not be assigned a
value. Therefore, do not specify a data type for a procedure itself.

Note

Identifiers and labels declared in the main program are global.
That is, they can be referenced throughout the entire program,
including these procedures (or functions), so long as the
procedures are contained within the main program (are not
external). However, those identifiers and labels applying only
to a particular procedure (or function) but not to the program
as a whole should be declared within that procedure (or
function). These identifiers and labels are local.

Invoking Procedures

A procedure statement invokes, or calls, a procedure. A procedure
statement has the form:

procedure-identifier [(actual-parameter-1 [,actual-parameter-2]. . .)]

The procedure-identifier is the name of the called procedure. When the
called procedure has one or more formal parameters defined in its
heading, the procedure statement must contain the corresponding actual,
parameters along with the procedure-identif ier.

Second Edition, Update 1 9-10

PASCAL REFERENCE GUIDE

arrpar : ARRAY [lowbound..highbound : ordtype] OF anytype

The parameter arrpar can be either a value parameter or a variable
parameter. If arrpar is passed by value, the component type, anytype,
cannot be a file or a type containing a file. The identifiers lowbound
and highbound must be of an ordinal type, specified by ordtype.

F o u r t h E d i t i o n 9 - 1 0

C o n f o r m a n t A r r a y P a r a m e t e r s f

Conformant array parameters have been added to ISO Standard Pascal in
order to overcome a major difficulty created by Pascal's strict typing.

Note

Conformant arrays are part of the ISO Pascal standard, but not
part of the ANSI standard. If your programs must conform to
the ANSI standard, do not use conformant array parameters.

Without conformant arrays, it is impossible to use the same procedure
or function to handle arrays that have the same type and shape, but
d i f ferent bounds.

For instance, you might wish to wr i te a procedure that sorts a
one-dimensional array of integers — an array that might consist of 10,
25, or 50 in tegers . In ear l ier vers ions of Pascal (and in ANSI
Standard Pascal), there are two possible solutions. You can declare a
single 50-integer array type, pad the smaller arrays to fit i t, and
thus have a single procedure to handle the sorting; or you can declare
three different array types, but then have three sort procedures that
are identical except for their array bounds.

B o t h o f t h e s e s o l u t i o n s a r e c u m b e r s o m e a n d i n v o l v e w a s t e d s t o r a g e _
space . Con fo rmant a r ray pa ramete rs , however, make i t poss ib le bo th to (
dec la re the th ree d i f fe ren t a r ray types and to use a s ing le p rocedure ^
to sort the arrays.

A conformant array parameter definition occurs in the formal parameter
spec ificat ion o f a procedure or func t ion . I ts genera l fo rm is as
f o l l o w s :

PROCEDURES AND FUNCTIONS

The fo l lowing program example uses conformant ar ray parameters .
PROCEDURE BUBBLE_SORT sorts arrays of different sizes by means of a
simple sort ing algor i thm.

PROGRAM Sortarrays(INPUT, OUTPUT, INARR, OUTARR);
TYPE

RANGE = -100..100;
SMALLARRTYPE = ARRAY [1..10] OF INTEGER;
BIGARRTYPE = ARRAY [-10..20] OF INTEGER;

VAR
INARR, OUTARR : TEXT;
SMALLARR : SMALLARRTYPE;
BIGARR : BIGARRTYPE;
I : RANGE;

PROCEDURE BUBBLE_SORT
(VAR ARR : ARRAY [LOW..HIGH : RANGE] OF INTEGER);

VAR
I, J : RANGE;
HOLD : INTEGER;

BEGIN
FOR I := LOW TO (HIGH - 1) DO

FOR J := LOW TO (HIGH - 1) DO
IF ARR[J] > ARR[J + 1] THEN

BEGIN
HOLD := ARR[J];
ARR[J] := ARR[J + 1];
ARR [J +1] := HOLD

END;
END; {BUBBLE_SORT}

BEGIN
FOR I := 1 TO 10 DO

BEGIN
WRITE('Enter an integer: ');
READLN(SMALLARR[I]);

END;
BUBBLE_SORT(SMALLARR); {first call to BUBBLE_SORT}
FOR I := 1 TO 10 DO

WRITELN(SMALLARR[I]);
RESET(INARR);
FOR I := -10 TO 20 DO

READLN(INARR, BIGARR[I]);
BUBBLE__SORT(BIGARR); {second call to BUBBLE_SORT}
REWRITE(OUTARR);
FOR.I := -10 TO 20 DO

WRITELN(OUTARR, BIGARR[I])
END. {Sortarrays}

9 - 1 1 F o u r t h E d i t i o n

PASCAL REFERENCE GUIDE

When procedure BUBBLE_SORT is invoked, the identifier LOW takes on the
value of the lower bound of the actual parameter, and HIGH takes on the
value of the upper bound of the actual parameter. When SMALLARR is
sorted, LOW is 1 and HIGH is 10; when BIGARR is sorted, LOW is -10 and
HIGH is 20.

The actual parameter must be compatible with the conformant array
definition in the formal parameter. The actual parameter is compatible
if all of the following conditions hold:

• It has the same number of dimensions as the conformant array
parameter.

• I ts index type is compatible with the index-type specif ication
of the conformant array parameter.

• Its lower and upper bounds are within the range specified in the
conformant ar ray parameter. (I f they are not , the er ror is
detected only if the -RANGE option is specified.)

• Its component type is the same as or compatible with that of the
conformant array parameter.

Conformant ar rays can be mul t id imensional . For a mul t id imensional
conformant array, put semicolons between the dimensions instead of
commas. An ordinary multidimensional array is declared

VAR SOMEARR : ARRAY [1..10, 1..20] OF INTEGER;

but a multidimensional conformant array parameter is declared

PROCEDURE CONF(VAR SOMEARR : ARRAY [LO..HI : SMALLRANGE;
TOE..HEAD : LARGERANGE] OF INTEGER);

A conformant array can also be PACKED, but only the last dimension of a
multidimensional conformant array can be PACKED. Moreover, there are
severe limits on the operations you can perform on a PACKED ARRAY OF
CHAR that is a conformant array parameter. In this situation, a PACKED
ARRAY OF CHAR behaves l ike an ordinary array: you cannot use
relational operators on it; you cannot read, write, or assign it as a
unit; you cannot use the STR function on it; and you cannot assign
the result of the UNSTR function to it. To avoid these limitations,
use the STRING type instead of the PACKED ARRAY OF CHAR. (The STRING
type is a Prime extension. See Chapter 6.)

F o u r t h E d i t i o n 9 - 1 2

PROCEDURES AND FUNCTIONS

If your program passes more than one array at a time as a conformant
array parameter, you should be carefu l to observe the ru les for
assignment compatibility given in the ASSIGNMENT STATEMENT section of
Chap te r 8 . The f o l l ow ing p rog ram i s i nva l i d because t he a r ray
variables are declared in different ways in the main program and in the
formal parameter specificat ion.

PROGRAM Badconf;
VAR

A : ARRAY [1..5] OF INTEGER; {These arrays are of}
B : ARRAY [1..5] OF INTEGER; { di fferent types.}

{The declaration A, B : ARRAY [1..5] OF INTEGER would be valid.}
COUNT : INTEGER;

PROCEDURE CONF (VAR C, D : ARRAY [LOW..HIGH : INTEGER] OF INTEGER)
{These two arrays share the same declaration, so they are of
the same type.}

BEGIN
C[LOW] := D[LOW]

END;

BEGIN
FOR COUNT := 1 TO 5 DO

BEGIN
ACCOUNT] := 0;
B[COUNT] := 2 * COUNT

END;
CONF(A, B)

END.

{ i n i t i a l i z e a r r a y s }

{call the procedure}

This program would receive the following error message

21 CONF(A, B)

ERROR 2 40 SEVERITY 3 BEGINNING ON LINE 21
This parameter must have the same type definition as the
previous parameter.

You should also be careful not to assign a value to either of the
array-bound identifiers. The assignment HIGH := 10, for example, would
generate the error message

10 HIGH := 10;

ERROR 178 SEVERITY 3 BEGINNING ON LINE 10
FOR loop control variable or a conformant array bound
identifier may not be assigned to, read in, or passed as
a VAR parameter.

9-13 Fourth Edit ion

PASCAL REFERENCE GUIDE

Procedures and Functions as Parameters

In Pascal, you can declare and pass a procedure or function as a
parameter. Any procedure or function can pass any other procedure or
function as a parameter.

Declaring Procedures and Functions as Parameters: A procedure or
function declaration must list another procedure or function as a
formal parameter. For example:

PROCEDURE A (PROCEDURE X);

If the procedure or function that is being passed has parameters of its
own, you must also list the number and types of parameters. For
example:

PROCEDURE A (PROCEDURE X(X1, X2 : INTEGER));

If you are passing a function, you must state the type that the
function returns:

PROCEDURE A (FUNCTION Y(Y1, Y2 : INTEGER) : INTEGER);

A procedure or function parameter can even have other procedures and/or
functions as parameters:

PROCEDURE A (FUNCTION Y(PROCEDURE Yl;
FUNCTION Y2 : CHAR) : INTEGER);

The procedure or function that is declared must match — parameter for
parameter, in number and type — the declaration for the procedure or
function that is passed.

Passing Procedures and Functions as Parameters: The name of a
procedure or function is passed the same way any variable is passed.
For example:

ADD(SORT);

F o u r t h E d i t i o n 9 - 1 4

PROCEDURES AND FUNCTIONS

The procedure named SORT is passed to a procedure named ADD. The name
SORT is passed without parameters, but the number and type of
parameters declared in the SORT procedure must match those in the ADD
declaration, parameter for parameter.

Five examples of procedure and function parameters follow.

Example 1:

{This program invokes a procedure that invokes another procedure.}

PROGRAM Calll(OUTPUT);
VAR

I : INTEGER;

PROCEDURE ADD1;
BEGIN

I := I + 1;
END;

PROCEDURE CALLPROC(PROCEDURE X) ;
BEGIN

X ; { I n v o k e s p r o c e d u r e X }
END;

BEGIN {main program}
I := 0;
CALLPROC(ADD1); {PROCEDURE ADD1 is the actual parameter}
W R I T E L N (I) { 1 = 1 }

END.

9 - 1 5 F o u r t h E d i t i o n

PASCAL REFERENCE GUIDE

Example 2:

{This example invokes functions rather than procedures. FUNCTION ADDF
adds together the values returned by calling FUNCTION VAL10 twice.)

PROGRAM Call2(OUTPUT);
VAR

I : INTEGER;

FUNCTION VAL10 : INTEGER;
BEGIN

VAL10 := 10 {Function value is 10}
END;

FUNCTION ADDF(FUNCTION X : INTEGER) : INTEGER;
BEGIN

ADDF := X + X {Adds two function values together}
END;

BEGIN {main program}
I := ADDF(VALIO); {Actual parameter is FUNCTION VAL10}
W R I T E L N (I) { I = 2 0 }

END.

Example 3:

{This example uses both a procedure and a function as parameters.}

PROGRAM Call3(OUTPUT);
VAR

I, J : INTEGER;

FUNCTION SQUARE(X : INTEGER) : INTEGER;
BEGIN

SQUARE := X * X
END;

FUNCTION FCALLFUNC(FUNCTION Z(R : INTEGER) : INTEGER) : INTEGER;
BEGIN

FCALLFUNC := Z(5) {Invokes specified function, with 5}
E N D ; { a s a c t u a l p a r a m e t e r }

PROCEDURE PCALLFUNC(FUNCTION Y(Q : INTEGER) : INTEGER);
BEGIN

I : = Y (5) { I n v o k e s s p e c i fi e d f u n c t i o n , w i t h 5 }
E N D ; { a s a c t u a l p a r a m e t e r }

BEGIN {main program}
J := FCALLFUNC(SQUARE); {Invokes FCALLFUNC, then PCALLFUNC,}
PCALLFUNC(SQUARE); { both with SQUARE as actual parameter}
W R I T E L N (I , J) { I = 2 5 ; J = 2 5 }

END.

F o u r t h E d i t i o n 9 - 1 6

PROCEDURES AND FUNCTIONS

Example 4:

{This example also uses both a procedure and a function as parameters.
The procedure and function in this program, however, do not operate
identically, as they did in Example 3.}

PROGRAM Call4(OUTPUT);
VAR

I, J : INTEGER;

PROCEDURE ADD(X
BEGIN

I := I + X
END;

INTEGER);

{Add value of parameter to}
{ that of global variable}

(

FUNCTION FCALLPROC(PROCEDURE Z(R : INTEGER)) : INTEGER;
VAR

R : REAL;
BEGIN

R := 2.19;
Z (ROUND(R)) ; {Ca l l spec i fied p rocedu re }
FCALLPROC := 10 {Function value is 10}

END;

PROCEDURE PCALLPROC(PROCEDURE Y(Q : INTEGER));
BEGIN

Y(8) ; {Ca l l spec ified procedure , w i th 8 }
E N D ; { a s f o r m a l p a r a m e t e r }

BEGIN {main program}
I := 0;
J := FCALLPROC(ADD); {Invokes FCALLPROC with ADD}
W R I T E L N (I , J) ; { I = 2 ; J = 1 0 }
PCALLPROC(ADD); {Invokes PCALLPROC with ADD}
WRITELN(I, J) { I and J both = 10}

END.

9-17 Fourth Edit ion

PASCAL REFERENCE GUIDE

Example 5:

{The effect of this program is to call the function ADD1 three times.}

PROGRAM Call5(OUTPUT);
VAR

I : INTEGER;

PROCEDURE ADD2(PROCEDURE Al) ;
BEGIN

A l ; { I n v o k e s s p e c i fi e d p r o c e d u r e t w i c e }
A l

END;

PROCEDURE ADD1;
BEGIN

I := I + 1 {Increments global variable}
END;

PROCEDURE CALLPROC(PROCEDURE X(PROCEDURE Y) ; PROCEDURE Z) ;
BEGIN

Z; {Invokes PROCEDURE Z; here, ADD1}
X(Z) {Invokes PROCEDURE X, with PROCEDURE Z}

END; { as actual parameter; here, ADD2 has ADD1}
{ as actual parameter}

BEGIN {main program}
I := 0;
CALLPROC(ADD2, ADD1);
W R I T E L N (I) { 1 = 3 }

END.

Note

A procedure or function cannot be a variable parameter. For
example:

PROCEDURE X (VAR PROCEDURE Y); {this is invalid}

Any attempt to use a procedure or function as a variable
parameter causes the VAR to be ignored and a severity 2 error
to be given.

F o u r t h E d i t i o n 9 - 1 8

PROCEDURES AND FUNCTIONS

Example 1:

PROGRAM TEST;

PROCEDURE INDATA;... BEGIN... END;
PROCEDURE SORT;...BEGIN...END;
PROCEDURE OUTDATA;.. .BEGIN... END;
{Main program begins here.}
BEGIN

INDATA;
SORT;
OUTDATA

END.

Example 2:

PROGRAM CURVE (INPUT, CUTHJT) ;
VAR

X, Y : REAL;
I : INTEGER;

PROCEDURE PLOT(A, B: REAL; J: INTEGER); {A, B, & J are formal value
parameters.}

BEGIN... END;
PROCEDURE ENDPLOT;

BEGIN... END;
{Main program begins here.}
BEGIN

X := 0.0;
Y := 1.0 + SIN(X);
READLN(I);
I := I + 2;
PLOT(X, Y, I); {X, Y, and I are actual parameters.}

ENDPLOT;

END.

9 - 11 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

Standard Procedures

A standard procedure, denoted by a predefined identifier, is a built-in
procedure supplied by the Pascal language.

Prime Pascal supports the following standard procedures:

• File Handling Procedures: RESET, GET, REWRITE, PUT, READ,
READLN, WRITE, and WRITELN. (See Chapter 10.)

I/O Auxiliary Procedures: PAGE and CLOSE. (CLOSE is a Prime
extension. See Chapter 10.)

•

• Dynamic Allocation Procedures: NEW and DISPOSE. (See Chapter
6.)

Note

19 2 I V^ °f the standard transfer procedures PACK and UNPACK
I in Prime Pascal will generate a severity 3 error message

and cause your program to fail because PACK and UNPACK
are not supported in Prime Pascal. This is a Prime
r e s t r i c t i o n .

FUNCTIONS

Functions are also user-wri t ten subprograms. Here are some
characteristic traits of functions:

• The keyword FUNCTION is used instead of PROCEDURE.

• Similar to a procedure, a function is a subprogram.

• Unlike procedures and standard functions, the names of
user-written functions must represent values. Procedure names
and standard function names cannot represent values.

• Unlike a procedure, a data type must be specified for the
function itself in the function heading.

A function is an independent program unit that accepts zero or more
parameters to produce a single output value. A function must be
declared in a function declaration, a forward function declaration, or
an external function declaration before the function can be invoked.

Function declarations are discussed below. Forward and external
function declarations are discussed later in this chapter.

The external function declaration is a Prime extension to standard
Pascal.

Second Edition, Update 1 9-12

PROCEDURES AND ETJNCTIDNS

Function Declarations

The general form of a function declaration is:

FUNCTION identifier [(formal-parameter-list)]:
r e s u l t - t y p e - i d e n t i fi e r ;

block;

The identifier is the name of the function. The resnl r- type- identif ier
is the"Ste type of the function. The formal-parameter-list consists
of parameters.

Example 1:

F U N C T I O N S Q R T (X : R E A L) : R E A L ; .
{This function computes the square root of X (X>0) using Newton s
method.}
VAR

OLD, NEW : REAL;
BEGIN

NEW := X;
REPEAT

OLD := NEW;
NEW := (OLD + X/CLD) * 0.5

UNTIL ABS(NEW - CLD) < EPS * NEW; {EPS being a global constant}
SQPT := NEW

END; {Function Sqrt}

Example 2:

FUNCTION MAX(A : VECTOR; N : INDEXTYPE) : REAL;
{This function finds the largest value in A, which is declared

A : ARRAY [INDEXTYPE] OF REAL and where
INDEXTYPE = 1.. LIMIT}

VAR
LARGESTSOFAR : REAL;
FENCE : DJDEXTYFE;

BEGIN
LARGESTSOFAR := A[l] ;
{Establishes LARGESTSOFAR = MAX(A[1])}
FOR FENCE := 2 TD N DO

IF LARGESTSOFAR < A [I] THEN
LARGESTSOFAR := A[I];
{Re-establishing LARGESTSOFAR = MAX(A[1],.. ,,A[FENC__])}

{So now LARGESTSOFAR = MAX(A[1],.. .,A[N]) }
MAX := LARGESTSOFAR

END; {Function MAX}

9 - 1 3 S e c o n d E d i t i o n

DOC4303-191

Invoking Functions

The appearance of the function name in a program invokes (or calls) and
executes the function subprogram. This invocation is called the
function designator. The function designator has the form:

function-identifier [(actual-parameter-1 [, actual-parameter-2]...)]

The function-identif ier is the name of the called function. When the
called function has one or more formal parameters defined in its
heading, the function designator must contain the corresponding actual
parameters along with the functi on-identif ier. Example:

VAR
J, K : INTEGER;

FUNCTION CUBE (I : INTEGER) : INTEGER;
BEGIN

CUBE := I * SQR(I)
END; {Function CUBE}

BEGIN {main program}
READLN (J) ;
K := OJBE(J); {Function CUBE is invoked here.}

END.

Standard Functions

A standard function, which has a predefined function name, is a
built-in function supplied by the Pascal language. The available
standard functions are listed and explained in Chapter 11.

FOPWARD PROCEDURES AND EUNCTIONS

Pascal permits subprograms to call each other within the same Pascal
program. Subprogram A may call subprogram B before B is fully defined
if B has already been declared using the forward declaration.

S e c o n d E d i t i o n 9 - 1 4

PROCEDURES AND EUNCTIDNS

Forward Declarations

A forward declaration is like other subprogram declarations, except
rh™e subprogram block is replaced by the word POMARD. Tlusblock,
led by the keyword PROCEDURE or EUNCTION and its associated subprogram
name, appears later in the program. Example:

FUNCTION GCD(N,M : INTEGER) : INTEGER; FORWARD;
PROCEDURE LOWTERM(VAR N,D : INTEGER);
VAR

CD : INTEGER;
B E G I N _ _ ,

CD := GCD(N,D); {This statement needs the forward declaration.}
N := N DIV CD;
D := D DIV CD

END; {procedure LCWTERM}
EUNCTION GCD; {Note the abbreviated heading}
{Full declaration of GCD begins here.}
VAR

R : INTEGER;
BEGIN

REPEAT
R := M MDD N;
IF R <> 0 THEN

BEGIN
M := N;
N := R

END
UNTIL R = 0;
GCD := N

END; {function GCD}

EXTERNAL PROCEDURES AND FUNCTIONS

Prime Pascal allows a program to call independent, external, separately
compiled subprograms after they have been declared with the external
declarations within the program. These subprograms can be external
Pascal procedures and functions or subprograms written in other
languages. This is a Prime extension.

External Declarations

To declare an external, separately compiled subprogram, simply use the
word EXTERN at the end of a procedure or function heading, similar to
the FORWARD declaration. For example:

PROCEDURE H_OT(X, Y : REAL; I : INTEGER); EXTERN;

9 - 1 5 S e c o n d E d i t i o n

DOC4303-191

2SnS? SL *? e^™1 subprogram does not appear in the callingprogram. The external subprogram file will be located at load time.

Note
Use the word EXTERN in every external subprogram declaration,
no matter what language the subprogram is written in.

The calling program calls the subprogram and passes parameters in the
usual way:

PLOT(X, Y, 3);

The parameters that are passed must be compatible with the parameters
of the subprogram in number and data type. (See Appendix D for
information on interfacing Pascal data types with those of other
languages.)

Subprograms Written in Pascal

When you write a subprogram in Pascal, you must tell the compiler that
the subprogram is to be compiled externally and that the subprogram
will be called ty other programs.

Using the ($E+) Compiler Switch: To achieve these requirements, simply
put Pascal's {$E+} compiler switch at the beginning of every external
subprogram file. For example:

{$E+}
FUNCTION ADD (A, B : INTEGER) : INTEGER;
BEGIN

ADD := A + B
END;

Do not use the {$E-} switch at the end of the file. Also, the
subprogram ends with a semicolon, not a period. Without the {$E+}
switch, the compiler would expect the main body of the program to be
included; that is, it would expect BEGIN...END followed by a period.

Note

You can have many subprograms in the same file. If you have
many subprograms in a file, put only .ong. {$E+} switch at the
top of the file. All of the subprograms within a file will
compile when the file itself is compiled.

For more information on the {$E+} compiler switch see Chapter 2.

S e c o n d E d i t i o n 9 - 1 6

PROCEDURES AND EUNCTIONS

Using the -EXTERNAL Option Instead of {$E+}: An alternative to using
the K switch in the subprogram is to use the -EXTERNAL option every
time you compile the file of subprograms. For example:

PASCAL filename -EXTERNAL

The filename is the name of the file that contains ^external
subprograms. (See Chapter 2 for more information on compiling
programs.)

Defining External (Global) Variables with {$E+}: If you want your
external subprograms to reference the variables that are declared in
the calling program, you must use the {$E+} and {$E-} switches in the
VAR declaration of the calling program. For example:

VAR
I, J : INTEGER;

{$E+}
X, Y, Z : INTEGER;

{$E-}

Here is an example of a program that calls an external procedure. It
has one variable, ADDSUM, that is used externally:

PROGRAM File 1;
VAR

I, J : INTEGER;
{$E+}

ADDSUM : INTEGER;
{$E-}
PROCEDURE ADD (A, B : INTEGER); EXTERN;
BEGIN {main program}

I := 23;
J := 45;
ADD(I, J); {external procedure is called here}
WRITELN (ADDSUM)

END.

Here is the external procedure ADD, which the above program calls.
Notice that the external variable ADDSUM must also be declared in the
subprogram at the top, of the file, outside the procedure or function
block:

{$E+}
VAR

ADDSUM : INTEGER;
PROCEDURE ADD (A, B : INTEGER);
BEGIN

ADDSUM := A + B
END;

9 - 1 7 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

Declaring External Procedures and Functions: If you want your external
subprogram to call a procedure or function that is contained in the
main program, you must use the {$E+} and {$E-} switches around the
procedure or function declaration in the main program.

Here is an example of a main program that contains an externally
declared procedure:

VAR
A, B, C, D : INTEGER;

{$E+}
PROCEDURE ADD (X : INTEGER Y : INTEGER) ;

VAR
Z : INTEGER;

BEGIN {add}
Z := X + Y;
WRITELNCSum is ',Z)

END;
{$E-}
PROCEDURE MULT (P : INTEGER; Q : INTEGER); EXTERN;
BEGIN {main}

A := 8;
B := 9;

1 9 . 2 A D D (A , B) ;
C := 5;
D := 6;
MULT(C, D)

END.

Here is the external subprogram, that calls the procedure:

{$E+}
PROCEDURE ADD(X : INTEGER; Y : INTEGER); EXTERN;
PROCEDURE MULT (I : INTEGER; J : INTEGER) ;

VAR
M : INTEGER;
K, L : INTEGER;

BEGIN {mult}
K := 50;
L := 60;
M := I * J;
WRITELN ('Mult is ',M);
ADD (K, L) {external procedure called here}

END;

Notice that the procedure is declared again under the {$E+} switch, and
that this procedure heading ends with EXTERN.

Compiling and Loading Subprograms: Remember that each external
subprogram tile must be compiled and loaded separately. After you have
entered SEG's LOAD subprocessor, the main program must be loaded before
the separately compiled subprograms. For more information on
compiling, loading, and executing programs, see Chapters 2 and 3.

Second Edit ion, Update 1 9-18

PROCEDURES AND ETJNCTIDNS

External subprogram names, as well as the names of main programs,
cannot be more than 32 characters long.

Caution

Do not define a main program as external. An error message
will result. The following example is invalid:

{$E+}
PROGRAM Main;

BEGIN

END.

Subprograms Written in Other Languages

Subprograms declared in external procedure or function declarations in
the main program can be written in any Prime high-level language or
Prime Macro Assembly (PMA) language with certain restrictions:

• There must be no conflict of data types for variables being
passed as parameters. For example, a FIXED BINARY(15) in PL/I
is equivalent to an INTEGER in Pascal.

• Programs compiled in either 64V or 321 mode cannot reference or
be referenced by programs compiled in R mode. Programs in 64V
or 321 mode may reference each other.

For more information on interfacing Pascal with other languages, see
Appendix D.

9-18A Second Edi t ion, Update 1

PROCEDURES AND EUNCTIONS

Subprograms from Libraries

Prime supplies several libraries of application-level subroutines and
Ss operating system subroutines. These subroutines can be declared
a^erSl procures or functions and then called fran any point
within the program. When a subroutine from such a library is being
used, the library must be loaded with SEG's LIBRARY command. (See
Chapter 2 for instructions.)

For more information on Prime's subroutines, see the Subroutines
Reference Guide.

RECURSIVE PROCEDURES AND FUNCTIONS

A subprogram can call itself. This process is called recursion. A
subprogram can keep calling itself for as many times as necessary.

Recursive subprograms are said to be at different "levels." Whenever a
subprogram calls itself, a new set of identical local variables is set
up automatically and the values of these variables change back or
"initialize". The computer remembers and stores the values at each
"level", so that when the program recurses back from the innermost
subprogram to the outermost, the operations at each level finish
executing.

9 - 1 9 S e c o n d E d i t i o n

DOC4303-191

The following program is a simple example of recursion in Pascal. This
program writes out a palindrome. A palindrome is a word that is
spelled the same way forward and backward. Given just half of the
palindrome in the input textf ile, the program recurses and echoes the
entire palindrome back to the terminal:

PROGRAM PALINDROME;
VAR

X : CHAR;
PROCEDURE FUTPAL;

VAR
X : CHAR;

BEGIN
IF NOT(EOLN(INPUT)) THEN

BEGIN
READ(INHJT, X) ;
WRITE (X);
PUTPAL; {recursion happens here}

I W R I T E (X) ;
END;

END; {of PUTPAL procedure}
BEGIN {main program}

RESET (INPUT, 'indata');
WHILE NOT (EOF(INHJT)) DO

BEGIN
FUTPAL;
READLN (INPUT);

END;
WRITELN;
CLOSE (INPUT)

END.

If the input file contains the characters NO, the palindrome program
will recur se and print the word NOON at your terminal.

The following program is another good example of recursion:

PROGRAM Frog;

{Using a recursive procedure called JUMP, this program
calculates and writes out all of the ways a frog can jump to
the top of a 5-step flight of stairs, jumping one, two, or
three steps at a time. TDPSTEP is a constant that stands for
the fifth (top) step, and it flags the end of any of the frog's
series of jumps. WHICHSTEP is an array of type CURRENTSTEP
(0..5) that keeps track of the current step and which steps
were hit on the way up.}

OONST
TDPSTEP = 5;

TYPE
CURRENTSTEP = ARRAY[0. .TDPSTEP] OF INTEGER;

VAR
WHICHSTEP : CURRENTSTEP;

S e c o n d E d i t i o n 9 - 2 0

PROCEDURES AND ETJNCTIDNS

{The procedure is declared. N, which increments the WHICHSTEP
position, is initially passed the value of 0 from the main
program. LEAP is the index for the outer FOR loop and it
controls the possible number of steps the frog can jump. I is
the index for the inner FOR loop that controls the writing out
of all the steps the frog hit on the way up.}

PROCEDURE JUMP(N : INTEGER);
VAR

LEAP : INTEGER;
I : INTEGER;

BEGIN {JUMP procedure}

{The outer FOR loop checks to see if the current step plus one
more leap is greater than the TDPSTEP. If not, then the
current step becomes the current step plus the leap.}

FOR LEAP := 1 TD 3 DO
BEGIN

IF (WHICHSTEP[N] + LEAP < 6) THEN
BEGIN

WHICHSTEP[N + 1] := WHICHSTEP[N] + LEAP;
IF WHICHSTEP [N + 1] = TDPSTEP THEN

BEGIN

{The inner FOR loop writes out all of the steps the frog hit on
the way up, if the frog has reached the TDPSTEP, with his
allowed number of leaps.}

FOR I := 1 TD (N + 1) DO
WRITE (WHICHSTEP[I]);

WRITELN
END

9 - 2 1 S e c o n d E d i t i o n

DOC4303-191

{The procedure calls itself — keeps jumping — if the frog
hasn't reached the TDPSTEP.}

ELSE
JUMP(N + 1) {Recursion happens here}

END
END

END; {of JUMP procedure}

{The main program writes a heading, initializes WHICHSTEP and N
to zero, then goes into the recursive routine.}

BEGIN {main program}
WRITELN;
WRITELN;
WRITELN ('COMBINATION OF STEPS FROG CAN JUMP' :43);
WRITELN;
WHICHSTEP[0] := 0;
JUMP(O)

END.

When the program is executed, you will get the following output at your
termina l :

COMBINATION OF STEPS FROG CAN JUMP

1 2 3 4 5
1 2 3 5
1 2 4 5
1 2 5
1 3 4 5
1 3 5
1 4 5
2 3 4 5
2 3 5
2 4 5
2 5
3 4 5
3 5

S e c o n d E d i t i o n 9 - 2 2

10
Input and Output

In Prime Pascal, data can either be input from your terminal or be
input from a PRIMDS input data file. Similarly, the output can either
be written out to your terminal or to a PRINDS output data file.

This chapter explains how to input and output data in Prime Pascal,
using both of these methods.

Throughout this chapter, various built-in I/O (input/output) functions
and procedures that manipulate data are discussed. These include eight
file-handling procedures (RESET, GET, READ, REAELN, REWRITE, PUT,
WRITE, and WRITELN), two BOOLEAN functions (EOF and EOLN) and two
auxiliary procedures (PAGE and CLOSE).

Note

Prime Pascal performs I/O operations only on data stored in
disk files or data supplied at the terminal.

1 0 - 1 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

INPUTTING AND OUTPUTTING DATA AT THE TERMINAL

When you execute a program, and your program requests data at execution
time, it can wait for you to input the data at your terminal. For
example:

PROGRAM Add;
VAR

A, B, C : INTEGER;
BEGIN

REAELN(A) ;
READLN(B) ;
C := A + B;
WRITELN(C)

END.

In the example above, the computer expects you to enter two integers at
your terminal upon execution. The execution would look like this,
where user input is underlined:

OK, SEG ADD
30
50

80 {computer writes out result here}
OK,

For more information on executing programs, see Chapter 3.

If you were using READs instead of READLNs in the example above, you
could place the integers on the same line, separated by spaces or a
comma. For example, given the following statements:

READ(X, Y);
Z := X + Y;
WRITELN (Z);

your terminal input and execution would look like this:

OK, SEG ADD
3 0 5 0 8 0
OK,

A space placed after the 30 and after the 50 signals the end of each
integer. It also tells the computer that each integer has two digits.
Notice that with READs, the computer outputs the sum on the same line
as your input.

Second Edition, Update 1 10-2

INPUT AND OUTPUT

You can make the computer prompt you for input by putting WRITE or
WRITELN statements in your program. For example:

VAR
A,B,C : INTEGER;

BEGIN
WRITELN ('Enter two numbers:');
READLN (A) ;
REAELN(B) ;
C := A+B;
WRITELN (C)

END.

Your input and execution would look like this:

OK, SEG ADD
Enter two numbers:
10
20

30
OK,

If you were using READs on CHAR type data instead of INTEGER or REAL,
you would not put spaces between the input characters. Therefore, with
the following program:

PROGRAM Letters;
VAR

X, Y, Z : CHAR;
BEGIN

WRITE('Enter three letters: ');
READ(X, Y, Z);
WRITELN (X: 10, Y, Z)

END.

your input and execution would look like this:

OK, SEG LETTERS
Enter three le t ters : PQR PQR
OK,

The 10 in the WRITELN statement formats the output so that nine spaces
are placed before the P. Notice that the WRITE statement prompts you
for input.

1 0 - 3 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

Using Erase and Kill Characters

PRIMDS provides two special character functions called erase and kill.
The erase character (the double quotation mark) erases the immediately
preceding character. For example, if you type 1235 when you wanted to
type 1234, you can correct your mistake by typing the double quote
followed by the correct input:

1235"4

The kill character (the question mark) deletes your entire current
line. For example, if you mistakenly type this:

123456789

and were supposed to type this:

ABCDEPGHI

you can correct your mistake by typing the question mark followed by
the correct input:

1234567897ABCDEFGHI

Note

Your System Administrator may have changed the Prime-supplied
erase and kill characters to some other characters. If so,
find out what they are. (You can change them yourself, too.)

How to Use Erase and Kill on Terminal Input: Before Rev. 19.1, use of
Prime's erase and kill characters on input from the terminal was not
possible because each character was assigned to the program as soon as
it was typed. Not only was it too late to use an erase or kill
character, but also an erase or kill character itself was assigned.

Now you can use the erase and kill characters by using the -INTERACTIVE
switch in the RESET statement in your program. For example:

VAR
I, J : INTEGER;

BEGIN
RESET(INPUT, '-INTERACTIVE');
READLN(I);
READLN(J)

END.

The -INTERACTIVE switch is a Prime extension. When this switch is
used, you can erase or kill anything on the current line — that is,
before you enter a carriage return. The word -INTERACTIVE must be
enclosed in single quotes.

Second Edition, Update 1 10-4

INPUT AND OUTPUT

Caution

You can only use READLNs with the -INTERACTIVE switch. Do not
use READS. A READ will not work with -INTERACTIVE because a
READ, by definition, still assigns a character as soon as it is
typed at the terminal, even before the carriage return is hit.
An attempt to use READs will generate an error message at
runtime.

The RESET statement opens a PRIMDS data file for reading. RESET is
usually used to open input data files; however, there are special
cases, such as the example above, where RESET is used to manipulate
input from the terminal. (RESET is fully discussed later in this
chapter.)

The word INPUT in the RESET statement is a standard Pascal textf ile
identifier. -INTERACTIVE can only be used with the file INPUT. (For
more information on the special functions of the file types INPUT and
OUTPUT in Prime Pascal, see Chapter 6 and the discussion on data input
files later in this chapter.)

Caution

When the -INTERACTIVE switch is on, you cannot use ODNTROL-C as
an end-of-file marker on terminal input. If you need an
end-of-file in your program, remove the -INTERACTIVE switch or
turn it off with the -TTY switch, explained below, before using
OONTROL-C.

How to Turn the -INTERACTIVE Switch Off: Since the -INTERACTIVE
feature is a switch, you can turn it on or off within a program. If
you want to turn the -MTERACTIVE feature off use the -TTY feature in
another RESET statement. For example:

VAR
A, B, C, D : INTEGER;

BEGIN
RESET(INPUT, '-INTERACTIVE');
READLN(A);
READLN(B) ;
RESET(INPUT, '-TTY');
READ(C);
READ(D)

END.

Use of -TTY lets you go back to inputting data from the terminal in the
"normal" way, without the use of Prime's erase and kill characters.
The -TTY switch must be used only with the standard file INPUT. (For
information on the other uses of -TTY, see the discussion on input data
files later in this chapter.)

10 -5 Second Ed i t i on , Upda te 1

INPUT AND OUTPUT

Prime's -IISJTERACTTVE extension differs from standard Pascal in the
following ways:

• There is no such feature in standard Pascal.

• READs are not allowed when using -TNTERACTIVE.

10-5A Second Edit ion, Update 1

UFD4303-192

Prime's -INTERACTIVE extension differs from standard Pascal in the
following ways:

• There is no such feature in standard Pascal.

• READs are not allowed when using -INTERACTIVE.

• In standard Pascal, assignments are supposed to be done when a
character is typed at the terminal. With the -INTERACTIVE
switch, assignments are done only after the carriage return is
h i t .

• The erase and kill characters are given special, meaning. In
standard Pascal, the carriage return is the only special
character.

INPUTTING AND OUTPUTTING DATA WITH PRIMDS FILES

In Prime Pascal, data can be input from an input data file. Similarly,
the computer can output data to an output data file. These data files
are FRIMDS files, similar to the PRIMDS file that contains your
program. These PRIMDS files can be placed in any directory that you
wish.

Upon execution of your program, the computer opens input and output
files, retrieves the data from the input file, performs operations
using that data, outputs results into an output file, and closes the
input and output files.

Note

If you do not use input and output files, data will be input
from and output to the terminal by default.

CREATING AND USING INPUT DATA FILES

When you want to place data in a file to be read and operated on by a
program, you can create a new PRIMDS file and type your data into that
file, using Prime's line editor, ED, or Prime's screen editor, EMACS.
(See the New User's Guide to EDITOR and RUNDFF, the EMACS Primer, or
the EMACS Reference Guide.)

Once your data has been typed into the file, you would name the file,
as you would name any PRIMDS file.

Second Edition, Update 1 10-6

INPUT AND OUTPUT

The RESET Procedure

The RESET procedure statement, which opens an input file, must be
placed in the executable part of the program before data from the file
is used. The format of RESET is:

RESEtf(file, 'filename');

The first parameter file is a Pascal file variable of a FILE type that
is associated with the input file. The second parameter 'filename' is
the actual name of the FRIMDS input file. This name must be enclosed
in single quotes. The inclusion of the second parameter, the PRIMDS
filename, is a Prime extension.

Consider the following example:

PROGRAM Readfile;
VAR

A, B, C : INTEGER;
INFILE : FILE OF CHAR;

BEGIN
RESET (INFILE, 'INDATA');
READ (INFILE, A);
READ (INFILE, B) ;
C := A + B;
WRITELN(C);
CLOSE (INFILE)

END.

The name of the input file (the second parameter) can be either a
simple filename, as shown above, or a pathname. For example:

RESET (INFILE, ' PAUL>HOMEWORK>INDATA') ;

The file INE&TA resides in the subdirectory HOMEWORK within the
directory PAUL. The pathname also must be in single quotes. (For more
information on UFDs and sub-UFDs, see the Prime User's Guide.)

In the sample program above, notice that the file variable INFILE must
be declared as a file. The CLOSE procedure must be used to close a
data file. (CLOSE is discussed later in this chapter.)

You can also use a variable to represent a filename, and use that
variable in the RESE7T procedure to open a file. For example:

VAR
A : ARRAY[1..32] OF CHAR;

RESET (INFILE, A);

1 0 - 7 S e c o n d E d i t i o n

DOC4303-191

Using a variable is particularly useful when you have to read data frem
different input files. For example, consider this program:

PROGRAM Pickaf ile;
VAR

F : FILE OF CHAR;
I : INTEGER;
FILENAME : ARRAY[1. .128] OF CHAR;

BEGIN
WRITE ('Please type in the name of file to be processed:');
REAELN(FILENAME) ;
RESET(F, FILENAME);
WHILE NOT EOF(F) DO

BEGIN
READLN(F, I);
WRITELN(I)

END;
CLOSE(F)

END.

When you execute this program, it will ask you for the name of the data
file, open that file, and perform its operations using the data in that
fi l e .

J_Qtfi

RESET does an implicit GET.

If you create an input file using one of Prime's text editors, you
should declare the file variable as FILE OF CHAR, regardless of the
type of data values you're using — INTEGER, REAL, BOOLEAN, and so on.
Because the editor interprets all data as ASCII characters, you would
not be able to read the data in your input file if the file variabiles
were declared FILE OF INTEGER, FILE OF REAL, or anything other than
FILE OF CHAR.

A file that has been declared FILE OF CHAR is commonly called a
t e x t fi l e .

S e c o n d E d i t i o n 1 0 - 8

INFUT AND OUTPUT

If you declare a file to be FILE OF INTEGER, FILE OF REAL, etc., the
input file should be created by the Pascal compiler, not the text
editor. You can accomplish this ty making a program or subprogram
generate the input file. Suppose you wanted to place five integers
into an input file that is created ty Pascal. You could read five
integers from the terminal, write the integers out to an output file,
and then make the outfile the input file. For example:

VAR
A, B, C, D, E : INTEGER;
DATAFILE : FILE OF INTEGER;

BEGIN
READ (A, B, C, D, E) ;
REWRITE (DATAFILE, 'DATA');
WRITE (DATAFILE, A, B, C, D, E) ;
RESET (DATAFILE) ;
READ (DATAFILE, A, B, C, D, E) ;
CLOSE(DATAFILE)

END.

The file variable is declared FILE OF INTEGER. Five integers are read
from the terminal upon execution. An ouptut file named DATA is opened
with the REWRITE procedure. The five integers are written out to that
file. The same file is reopened as an input file with RESET. The five
integers are read again — this time from the new input file, which is
still named DATA. (The REWRITE procedure is discussed later in this
chapter.)

Note

When a nontextf ile is created using Pascal — FILE OF INTEGER,
FILE OF REAL, etc. — and not the text editor, you cannot
modify the contents of that file with the editor because the
data are stored in binary form and not as ASCII characters.
The data in your input file created by Pascal would be
unrecognizable to you. Your data, therefore, would have to be
modified by a Pascal program or subprogram. Also, the standard
procedures READLN and WRITELN can only be used on files of type
FILE OF CHAR. The other standard procedures (READ, WRITE, GET,
and PUT) can be used on files of any other type.

1 0 - 9 S e c o n d E d i t i o n

DOC4303-191

You can declare file types using structured types such as RECORD,
ARRAY, and SET. For example:

TYPE
IOREC = REOORD

A: INTEGER;
B: ARRAY [1..6] OF CHAR;
C: (LEFT, RIGHT)

END;
VAR

F: FILE OF IOREC;
BEGIN

RESET(F, 'Fl');

Remember that files not declared as FILE OF CHAR, such as the one
above, cannot be modified with a text editor. They must be modified
with a Pascal program or subprogram only.

Using the TEXT File Type

Standard Pascal has a standard FILE type called TEXT. It is identical
to FILE OF CHAR. Whenever you are using CHAR type data in an input
file — or whenever you declare any file as FILE OF CHAR to use Prime's
text editors — you can simply declare it as TEXT instead. For
example, the following declarations are identical:

VAR
F : FILE OF CHAR;

VAR
F : TEXT;

For more information on TEXT, see Chapter 6.

Using the Standard Textf ile INEUT

Standard Pascal also has a standard textf ile called INPUT. This
textf ile does not have to be declared as a FILE type. For example:

VAR
A : INTEGER;

BEGIN
RESET (INPUT, 'INDATA');
READLN(INRJT, A);

S e c o n d E d i t i o n 1 0 - 1 0

INPUT AND OUTPUT

r When INPUT is used with a data file, the name of the file must be given
as the second parameter in the RESET procedure, as shown above.
If a file is not specified in a READ or READLN statement, the standard
textf ile INPUT is assumed. For example, the following have the same
effect, whether the standard textf ile INPUT is a data file or the
terminal:

READ (INPUT, A);

READ (A);

For more information on INPUT, see Chapter 6.

Switching from Standard INPUT File to Terminal
If you open an input data file with the standard textf ile INPUT, and
want to switch to inputting data from the terminal, use the -TTY switch
in another RESET procedure. For example:

VAR
A, B : INTEGER;

BEGIN
RESET (INPUT, 'INDATA');
F^AELN(INPUT, A);
RESET (INPUT, '-TTY');
READ(B)

END.

The value of A will be read from an input file named INEATA, and the
value of B will be read from the terminal. The standard file INPUT is
the first parameter with -TTY. The -TTY switch must be enclosed in
single quotes.
The -TTY switch also works with REWRITE and the standard textf ile
OUTPUT.

CREATING AND USING OUTPUT EftTA FILES

When you want to write data out to an output file, simply open the file
and name it using the REWRITE procedure.

The REWRITE Procedure

The format of the REWRITE procedure statement is:

REWRITE(file, 'filename');

10-11 Second Edition, Update 1

UPD4303-192

The first parameter file is a Pascal file variable of a FILE type that
is associated with the output file. The second parameter, 'filename'
is the actual name of the PRIMDS file. This name must be enclosed in
single quotes. The inclusion of the second parameter is a Prime
extension.

You do not have to create a PRIMDS output file beforehand. The REWRITE
procedure will create a PRIMOS file for you upon execution. For
example:

PROGRAM Writeout;
VAR

A, B, C : INTEGER;
OUTFILE : FILE OF CHAR;

BEGIN
READLN (A) ;
READLN(B) ;
C := A + B;
REWRITE (OUTFILE, 'OUTDATA');
WRITELN (OUTFILE, C) ;
CLOSE (OUTFILE)

END.

OUTFILE is declared as FILE OF CHAR. A and B are read from the
terminal. REWRITE creates a PRIMDS file named OUTDATA in your
directory. The value of C is written out to the new file, and the file
is closed with CLOSE. (The CLOSE procedure is discussed later in this
chapter.)

The second parameter 'filename' can also be a pathname. For example:

REWRITE (OUTFILE, ' PAUL>HOMEWORKX)UTDATA') ;

An output file called OUTDATA will be created in the subdirectory
HOMEWORK within the directory PAUL.

Note

Be sure to find out what your directory access rights are at
your instal lat ion.

Second Edit ion, Update 1 10-12

INPUT AND OUTEUT

A variable can also represent an output filename, and you can use that
variable in a REWRITE procedure to open a file:

VAR
OUTFILE : TEXT;
A : ARRAY[l..ll] OF CHAR;

BEGIN
A := 'PAUL>SAMPLE';
REWRITE (OUTFILE, A) {This is equivalent to}

{REWRITE (OUTFILE, ' PAUL>SAMPLE*) }
END.

Output files, like input files, can contain data of a structured type.
For example:

TYPE
A = ARRAY[1..10] OF CHAR;

VAR
OUTDATA : FILE OF A;

Using the Standard Textf ile OUTPUT

Pascal has a standard textf ile called OUTPUT. This is similar to the
standard textf ile INEUT, which was explained earlier in this chapter.
OUTPUT does not have to be declared as a file. For example:

VAR
A : ARRAY[1..60] OF CHAR;

BEGIN
REWRITE (OUTPUT, 'OUTDATA');
WRITELN (OUTFUT, A);
CLOSE (OUTPUT)

END.

When OUTFUT is used with an output file, the name of the file must
still be given as the second parameter in the REWRITE procedure, as
shown above.

If a file is not specified in a WRITE or WRITELN statement, the
standard textf ile OUTEUT is assumed. For example, the following have
the same effect, whether the standard textf ile OUTPUT is a data file or
the terminal:

WRITE (OUTPUT, A) ;

WRITE (A);

For more information on OUTFUT, see Chapter 6.

1 0 - 1 3 S e c o n d E d i t i o n

DOC4303-191

Switching from Standard OUTFUT File to Terminal

If you open an output data file with the standard textf ile OUTPUT, and
want to switch to outputting data to the terminal, use the -TTY switch
in another REWRITE procedure. For example:

VAR
A, B : INTEGER;

BEGIN
REWRITE (OUTPUT, 'OUTDATA');

18.3 WRITELN (OUTFUT, A);
REWRITE (OUTPUT, '-TTY');
WRITELN (B)

END.

The value of A will be written to an output data file named OUTDATA,
and the value of B will be written to the terminal. The standard file
OUTFUT is the first parameter with -TTY. The -TTY switch must be
enclosed in single quotes.

The -TTY switch also works for RESET and the standard textf ile INPUT.

I/O PROCEDURES AND EUNCTIONS

In addition to RESET and REWRITE, which are discussed earlier in this
chapter, there are 10 other built-in I/O procedures and functions.

There are three input file-handling procedures:

• GET

• READ

• READLN

There are three output file-handling procedures:

• PUT

• WRITE

• WRITELN

S e c o n d E d i t i o n 1 0 - 1 4

INPUT AND OUTPUT

There are two Boolean functions:

• EOF

• EQLN

There are two auxiliary procedures:

• PAGE

• CLOSE (a Prime extension)

All of these procedures and functions are briefly discussed in the
paragraphs that follow. For more information on these procedures and
functions (except CLOSE), consult a commercially available text. Other
standard Pascal functions are summarized in Chapter 11.

Input File-handling Procedures

In addition to the RESET procedure, there are three input file-handling
procedures — GET, READ, and READLN. (The RESET procedure is discussed
earlier in this chapter.)

The GET Procedure: The GET procedure can be used to move the file
pointer to the next element of the file.

The form of GET is:

GET (file);

GET advances the current file position to the next element, assigns the
value of this element to the buffer variable file", and leaves
EOF(file) false. If no next element exists, EOF(file) becomes true,
EOLN(file) becomes false, and file" is a space. The parameter file is
of a FILE type.

The READ Procedure: The READ procedure reads input data values and
assigns these values, in order by position, to the variables in the
READ parameter list. It has the form:

READ ([file,] variable-1 [,variahle-2]...) ;

The variables can be of type CHAR, INTEGER, DDNGINTEGER, REAL, 19,1
LCNGREAL, BOOLEAN, or a subrange of type CHAR, INTEGER, or LONGINTEGER,
etc. The file is a file variable that is associated with an input data
file. For example:

READ (INDATA, A, B) ;

1 0 - 1 5 S e c o n d E d i t i o n

DOC4303-191

Without a data input file, data is read from the standard textf ile
INPUT ty default, whether INPUT is a file or the terminal:

READ (A, B);

When the variable is of type CHAR (or a subrange thereof), the call:

READ(file, variable);

is equivalent to:

variable := file";
GET (file);

19 1 When the variable is of type INTEGER, LONGINTEGER, REAL, LONGREAL, or a
subrange of type INTEGER or LONGINTEGER, the call:

READ(file, variable);

reads a sequence of characters that forms a number according to the
rules for numeric constants (Chapter 4) and assigns the number to a
variable. Successive numbers are separated by blanks, ends of lines,
or commas.

A READ procedure may have several parameters. The call:

READ (file, variable-1,..,,variable-n);

is equivalent to:

READ (file, variable-1);

READ (file, variable-n);

In Prime Pascal, a READ automatically moves the pointer to the next
character. For example, consider these statements:

READ (INFILE, CH) ;
IF EOLN(INFILE) THEN

S e c o n d E d i t i o n 1 0 - 1 6

INPUT AND OUTFUT

The READ procedure assigns a value to CH, then moves the file pointer
to the next character on the line. The EXXN function then tests to see
if the character that the pointer is now pointing to is a carriage
return (end of line). Prime Pascal differs from many other languages
because in those languages a READ assigns a value while the pointer
remains at the character that was just assigned.

When you are inputting data from the terminal, you must still enter a
carriage return so that an EOLN can be encountered. (The ECLN function
is further discussed later in this chapter.)

The REAELN Procedure: The READLN procedure is a special form of the
READ procedure. It has the form:

REAELN[([file |variable-l] [,variable-2] ...)];

REAELN must only be applied to files that have been declared FILE OF
CHAR or TEXT, or to data input at the terminal. If the first parameter
file is omitted, then data is read from the standard textf ile INPUT ty
default, whether INPUT is a file or the terminal.
A READLN statement ty itself skips over characters until the end of the
current line and places the current file position at the beginning of
the next line. Thus, the call:

REAELN (file);

is equivalent to:

WHILE NOT ECLN (file) DO
GET (file);

GET (f ile);

With variables, REAELN reads the input data values into the variables
and then skips to the beginning of the next line. The call:

REAELN(file, variable-1,...,variable-n);
is equivalent to:

READ(file, variable-1,...,variable-n);
REAELN(f ile) ;

1 ° - 1 7 S e c o n d E d i t i o n

DOC4303-191

Output File-handling Procedures

In addition to the REWRITE procedure, there are three output
file-handling procedures — PUT, WRITE, and WRITELN. (The REWRITE
procedure is discussed earlier in this chapter.)

The PUT Procedure: After the REWRITE procedure opens an output file,
the PUT procedure can write the output value into the file.

The form of PUT is:

PUT (file);

PUT appends and writes the value of the buffer variable file" to the
end of the file. EOF(file) remains true. PUT writes the value into
the file, but does not assign the value to the variable, as WRITE does.
Here is another example using PUT:

file" := CH;
PUT (file);

The WRITE Procedure: The WRITE procedure writes the values of the text
and/or expressions into the output textfile. It has the general form:

WRITE([file,] write-parameter-1 [,write-parameter-2]...);

The file is an output data file. For example:

WRITE (OUTFILE, X, Y, Z);

If file is omitted, data is written out to the standard textf ile OUTPUT
by default, whether OUTPUT is a data file or the terminal:

WRITE(X, Y, Z);

If the WRITE procedure has several parameters, the call:

WRITE (file, write-parameter-1,... ,write-parameter-n) ;

is equivalent to:

BEGIN
WRITE (file, write-parameter-1) ;

WRITE (file, write-parameter-n)
END.

S e c o n d E d i t i o n 1 0 - 1 8

INPUT AND OUTFUT

A write-parameter is either a character string enclosed by a pair of
apostrophes or an expression (represented by its variable name) with
optional field-^width parameters.

If the write-parameter is a character string, it is written on the
output file exactly as it appears, without the delimiting apostrophe
characters. For example:

WRITECThe "blank character" is significant in a string.');
will produce:

The 'blank character' is significant in a string.

The use of two consecutive quotes will produce a single quote in
output.

If the write-parameter is a numeric expression, the value of the
expression is written in the output file.

You can specify the field width of the expression's value with this
format:

expression [: total-width [: frac-digits]]

The expression may be of type INTEGER, LC^INTEGER, REAL, LONGREAL, | 19.1
BOOLEAN, or of a structured type. The total-width is the total number
of character positions you want allocated to the value of the
expression. The frac-digits value, which can only be applied to type
REAL or LONGREAL, is the number of digits you want printed to the right 19 1
of the decimal point.

If the total width is larger than the actual value, then the difference
in the number of digits will be written as blanks to the left of the
value. For example, if A=10, and you say WRITELN (A: 6); four blanks I
w i l l b e w r i t t e n o u t t o t h e l e f t o f t h e 1 0 . '

1 0 - 1 9 S e c o n d E d i t i o n

19.1

19.1

DOC4303-191

If the total width is omitted, a default field-width will be assumed
according to the type of the expression. The default field-widths are
as follows:

Data Type Number of Character Positions

I N T E G E R , L O N G I N T E G E R 1 0

R E A L , L O N G R E A L 2 1

C H A R 1

B O O L E A N 4 (T R U E)
5 (FALSE)

A REAL value for which no frac-digits are specified will be written in
floating-point (scientific) form:

d...d.ddddddE+|-dd

6 - d i g i t

The LONGREAL form looks like this:

d... d. ddddddddddddEH-1 -dddd

12 digit

where each d denotes a decimal digit. The letter E is used for REAL
exponents, and the capital letter D is used for LONGREAL exponents. If
the default field-width is used, there should be 11 digits preceding
the decimal point for reals. Otherwise, this number of digits should
depend on the total-width specified. For example, if R and S are REAL
variables with values 0.1 and 1.5 respectively, the WRITELN procedures:

WRITELN (R) ;

WRTTELN(S:14);

will produce the following:

bbbbbbbbbbl.000000E-01
{Default case}

bbl.500000E+00

where each b is a blank.

S e c o n d E d i t i o n 1 0 - 2 0

INPUT AND OUTFUT

frac-digits invokes fixed-point (or decimal) representation for a REAL
or LONGREAL value and specifies the number of digits following the 119.1
decimal point. For example, if R and S are REAL variables with values
1.5 and 112.123 respectively, the WRITE procedure:

WRITE(R:7:2, S:10:l);
will produce the following:

bbbl.50bbbbbll2.1

where each b is a blank.

If the true field-width of the value is larger than the field-width
specified, Pascal will automatically extend the specified total-width
to a sufficient size. For example, if Y is a BOOLEAN variable with
value FALSE and R is a REAL variable with value 112.12, the WRITE
procedure:

WRITE(Y:1, R:3:2);

will produce the following:

FALSEbll2.12

where b is a blank. A positive REAL or LONGREAL number is always 19.1
written with one preceding blank, even if the specified field-width is
smaller than the true field-width. This, however, does not apply to
values of other types. For example, if R, S, and T are REAL variables
with values 1.5, +1.5, and -1.5 respectively, Y is a BOOLEAN variable
with value TRUE, and I is an INTEGER variable with value 6, the WRITE
procedure:

WRITE(R:7:5, S:7:5, T:7:4, Y:4, 1:1);

will produce the following:

bl.50000bl.50000-1.5000TRUE6

where b is a blank.

If the expression is of type CHAR, the statement:

WRITE(file, expression);
is equivalent to:

file" := expression;
PUT(file);

1 0 - 2 1 S e c o n d E d i t i o n

DOC4303-191

The WRITELN Procedure: The WRITELN procedure is a form of the WRITE
procedure. It has the format:

WRITELN[([f ile|write-parameter-l] [,write-parameter-2]...)];

For the description of write parameters, see the preceding section.

WRITELN must only be applied to files that have been declared FILE OF
CHAR or TEXT. If the first parameter file is omitted, then data is
written out to the standard textf ile OUTPUT by default, whether OUTFUT
is a data file or the terminal.

WRITELN writes a carriage return to the file. Thus, the call:

WRITELN (file, write-parameter-1,..., write-parameter-n);

is equivalent to:

WRITE (file, write-parameter-1,..., write-parameter-n);
WRITELN (file);

If a WRITELN procedure is called with a single parameter file or no
parameter at all, WRITELN simply sends a carriage return to the output
fi l e .

BOOLEAN Functions

Pascal has two built-in BOOLEAN functions that manipulate I/O — EOF
(end of file) and EQLN (end of line).

The EOF Function: The EOF function tests for an end-of-file condition
of a file. The form of EOF is:

EOF (file)

This function is true if the buffer variable file" has moved beyond the
end of the file. Otherwise it is false. If file is emitted, EOF is
applied to the standard textf ile INPUT, by default, whether INPUT is a
data file or the terminal.

Note

The ODNTRQL-C character is the end-of-file marker for input
that is read from the terminal. When you want your program to
check for an end-of-file marker on terminal input, type
CONTRQL-C at the terminal. If OONTRQL-C is not typed, the EOF
condition will not be checked.

S e c o n d E d i t i o n 1 0 - 2 2

INPUT AND OUTPUT

The use of EOF, as well as RESET, GET, REWRITE, and PUT is illustrated
in the following example:

VAR
INFILE, OUTFILE : TEXT;

BEGIN
RESET(INFILE, 'INDATA');
REWRITE (OUTFILE, 'OUTTDATA');
WHILE NOT EOF (INFILE) DO

BEGIN
OUTFILE" := INFILE";
PUT (OUTFILE) ;
GET (INFILE)

END;
CLOSE (INFILE); {The CLOSE procedure is discussed at the end}
CLOSE (OUTFILE) {of this chapter.}

END.

The BQLN Function: The function EQLN tests for an end-of-line
condition in a textfile. It has the form:

EQLN(file)

This function is true if the buffer variable file" corresponds to the
position of a line separator marking the end of the current line. The
line separator is the ASCII character LF (Line feed), which is a
carriage return. EDLN is applied to the standard textf ile INPUT, if
the parameter file is omitted, whether INPUT is a data file or the
te rmina l .

Auxiliary Procedures

There are two auxiliary procedures that manipulate I/O in Prime
Pascal — PAGE and CLOSE. The CLOSE procedure is a Prime extension.

The PZ__E Procedure: The form of the PAGE procedure is:

PAGE (file)

The PAGE procedure generates a skip to the top of a new page before the
next line of the output textf ile file is written. If the single
parameter file is omitted, then this procedure is applied to data that
is written out to the standard textf ile OUTEUT by default, whether
OUTPUT is a data file or the terminal.

10 -23 Second Ed i t i on , Upda te 1

UPD4303-192

For example:

WRITELN ('Page Test1);
WR_TELN('Page 1');
PAGE;
WRITELN('Page 2') ;

i The CLOSE Procedure: All input and output data files must be
I explicitly closed using the CLOSE procedure. Otherwise they will

remain open after the program terminates.

The form of the CLOSE procedure is:

CLOSE(file);

The CLOSE procedure is a Prime extension to standard Pascal.

For example:

VAR
Eyie: TEXT;

BEGIN
REWRITE (Eyie, ' FYLE') ;
WRITELN(Fyle, 'ABC');
WRITELN(Fyle, 'DEF');
CLOSE(Fyle)

END.

Second Edit ion, Update 1 10-24

11
Standard Functions

A standard function, denoted by a standard identifier, is a built-in
function supplied by the Pascal language. There are five types of
standard functions — arithmetic, transfer, ordinal, BOOLEAN, and ,Q 9
S T R I N G . i y ^

ARITHMETIC EUNCTIONS

ABS(X) Computes the absolute value of X. The type of X must
be INTEGER, LONGINTEGER, REAL, or LONGREAL. The type
of the result is the same as that of X.

SQR(X) Computes the square of X. X and the result will be of
the same data type: INTEGER, LONGINTEGER, REAL, or
LONGREAL.

Note

For the following arithmetic functions, the type of X must be
INTEGER, LONGINTEGER, REAL, or LONGREAL. The type of result is
always REAL or LONGREAL.

SIN(X) Computes the sine of X.

CDS(X) Computes the cosine of X.

11 - 1 S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

EXP(X) Computes the value of the base of natural logarithms
raised to the power X. This is exponential function
(e).

LN(X) Computes the natural logarithm of X. X must be
greater than zero.

SQRT(X) Computes the non-negative square root of X. X must be
non-negative.

ARCTAN(X) Computes the value, in radians, of the arctangent of
X.

TRANSFER FUNCTIONS

TRUNC(X)

ROUND (X)

Truncates a real number into an integer. X must be of
type REAL or LONGREAL. The result is of type INTEGER
or LONGINTEGER. If X is positive then the result is
the greatest integer less than or equal to X;
otherwise it is the least integer greater than or
equal to X. Examples:

TRUNC(3.7) yields 3

TRUNC(-3.7) yields -3

Rounds a real number to the nearest integer. X must
be of type REAL or LONGREAL. The result, which is of
type INTEGER or LONGINTEGER, is the value X rounded.
That is, if X is positive, ROUND (X) is equivalent to
TRUNC(X + 0.5); otherwise ROUND(X) is equivalent to
TRUNC(X - 0.5). Examples:

ROUND(3.7) yields 4

ROUND(-3.7) yields -4

ROUND(3.2) yields 3

ROUND(-3.2) yields -3

Note

Be careful when the result of your TRUNC or ROUND function is
of an INTEGER type. You can assign an INTEGER value to a
LONGINTEGER variable without any possible errors, but when you
attempt to assign a LONGINTEGER value to an INTEGER variable an
error is generated. This also applies to REAL and LONGREAL.
(See Chapter 6 for more information on LONGINTEGER and
LONGREAL.)

Second Edition, Update 1 11-2

STANDARD FUNCTIONS

ORDINAL FUNCTIONS

ORD(X)

CHR(X)

SUCC(X)

Gives the corresponding ordinal value of any character
in Prime's character set. (See Appendix C.) X can be
of any scalar type — except REAL and LONGREAL — 19.1
including subrange and enumerated types. The result
is an INTEGER value. For example:

ORD('F') yields 198

where 198 is the corresponding ordinal value of the
character 'F ' in the character set . Given an
enumerated type:

VAR
OPERATOR : (PLUS, MINUS, TIMES);

the ORD function can be used this way:

ORD (plus) yields 0

ORD(minus) yields 1

ORD (times) yields 2

The ORD function is also discussed in Chapter 6.

Gives the corresponding character value of any integer
between 0 and 255 inclusive. CHR is the opposite of
ORD. It yields a character element of Prime's
character set. (See Appendix C.) X must be of type
INTEGER. For example:

CHR(199) yields 'G'

CHR(225) yields 'a'

CHR(ORD('A')) yields 'A'

ORD(CHR(193)) yields 193

Gives a value whose ordinal number is one greater than
X. X can be of any scalar type — except REAL or
LONGREAL — including any subrange or enumerated type. 19.1
X and the result must be of the same type. For
example:

SUCC(l) yields 2

SUCC('A') yields 'B'

SUCC (ORD ('A')) yields 194

11-3 Second Edition

DOC4303-191

Given the following enumerated type:

TYPE
COLORS = (RED, YELLOW, BLUE, GREEN) ;

the SUCC function can be used this way:

SUCC (YELLOW) yields BLUE

SUCC (ORD (BLUE)) yields 3

The SUCC function is also discussed in Chapter 6.

PRED(X) Gives a value whose ordinal number is one less than X.
That is the only difference between PRED and SUCC. X

19 , can be of any scalar type — except REAL or LONGREAL— including any subrange or enumerated type. X and
the result must be of the same type. For example:

PRED (2) yields 1

PRED('B') yields 'A'

PRED(ORD('B')) yields 193

Given the following enumerated type:

TYPE
WEEKDAYS (SUN, NDN, TUES, WED, THURS, FRI, SAT);

the FRED function can be used this way:

PRED (TUES) yields MON

PRED (ORD(FRI)) yields 4

The PRED function is also discussed in Chapter 6.

S e c o n d E d i t i o n H " 4

STANDARD EUNCTIONS

BOOLEAN FUNCTIONS

ODD(X)

EOF(F)

EOLN(F)

X must be of type INTEGER or LONGINTEGER. The result
is TRUE if X is odd and FALSE otherwise.

F is the file var iable of an input fi le. This
function returns the value TRUE if an end-of-file
condition exists for F and FALSE otherwise. It
applies to the standard textf ile INPUT if the argument
F is omitted.

F is the file variable of an input textfile. This
function returns the value TRUE if the end of the
current line is reached and FALSE otherwise. It
applies to the standard textfile INPUT if F is
omit ted.

STRING FUNCTIONS

There are nine functions that manipulate character strings. All of
these functions, except the STR function, operate on values of the
STRING data type. The STRING data type and all STRING functions are
Prime extensions.

A brief description of each STRING function follows. For a complete
explanation on all of these functions and the STRING data type,
including program examples, see Chapter 6.

STR

UNSTR

LENGTH

INDEX

SUBSTR

DELETE

TRIM

LTRIM

Converts an ARRAY OF CHAR value to a STRING value.

Converts a STRING value to an ARRAY OF CHAR value.

Gives the operational length of the string.

Determines if a first string contains a second string,
and gives an integer that indicates the position in
the first string where the second string begins.

Gives a desired substring of any existing string.

Deletes a specified substring of any existing string,
and gives the resultant string.

Removes all trailing blanks from a given string, and
gives the resultant string.

Removes all leading blanks from a given string, and
gives the resultant string.

19.2

11-5 Second Edition, Update 1

APPENDIXES

Summary of Prime
Extensions and

Restrictions

This appendix lists Prime extensions and restrictions to standard
Pascal. The extension or restriction and the chapter in which it is
discussed appears in the left-hand column. A brief description appears
in the right-hand column.

Prime Extensions

Extension
and Chapter Reference

The LONGINTEGER data type
(Chapter 6 and Appendix B)

The LONGREAL data type
(Chapter 6 and Appendix B)

Description

The LONGINTEGER type allows you to
use 32-bit whole numbers without
declaring a subrange. Variables
declared as LONGINTEGER can have
values that fall within the subrange
-2147483648..+2147483647. (An
INTEGER value is a 16-bit number
that falls within the subrange
-32768..+32767.)

The LONGREAL type allows you to use
64-bit real numbers, as opposed to
REAL values, which are 32-bit
numbers.

19.1

A-1 Second Edition

DOC4303-191

19.1

18.3

The ARRAY OF CHAR enhancement
(Chapter 6)

Comment Delimiters /* */
(Chapter 4)

The -INTERACTIVE switch
for erase and kill characters
(Chapter 10)

19.1

The -TTY switch
(Chapter 10)

18.3

Optional Program Heading
(Chapter 5)

Order of Declarations
(Chapter 5)

.INCLUDE files
(Chapter 5)

You can read an array of characters
as one unit, instead of reading one
character at a time.

The sequence of symbols /* and */
can be used as comment delimiters in
Pascal programs in addition to the
standard delimiters { } and (* *).

You can use Prime's "erase" and
"kill" characters on data that is
input at the terminal by using the
-INTERACTIVE switch in a RESET
procedure. With -INTERACTIVE, any
character on the current line can be
deleted before you type a carriage
return.

Whenever you open and use input or
output files with the standard
textfiles INPUT and OUTFUT, and want
to switch back to inputting or
outputting data at the terminal, use
the -TTY switch in another RESET
procedure in your program. The -TTY
s w i t c h c a n a l s o t u r n t h e
-INTERACTIVE switch off. That is,
if you are using Prime's erase and
kill characters with -INTERACTIVE,
and want to go back to inputting
data from the terminal without the
use of erase and kill characters,
use -TTY in another RESET procedure.

The program heading is optional in
Prime Pascal. If present, the
program heading is only checked
syntactically by the Prime Pascal
compiler.

The LABEL, CONST, TYPE, VAR,
PROCEDURE, and EUNCTION declarations
can appear in any order in Prime
Pascal. However, the standard order
o f d e c l a r a t i o n s i s s t r o n g l y
recommended.

The contents of a file can be
included in a program unit at
compile time with the % INCLUDE
directive. %_N<_LUDE files can hold
a n y l e g a l P r i m e P a s c a l
code — declarations as well as
executable statements.

Second Edition A-2

EXTENSIONS AND RESTRICTIONS

$ and _ in identifiers
(Chapter 4)

The & and !
(Chapter 7)

integer operators

The OTHERWISE keyword
(Chapter 8)

Dollar signs and underscores are
a l lowed in ident ifiers in Pr ime
Pascal. However, the underscore
cannot be the first character.

Prime's integer operators & and !
per form Boolean AND and OR
operations respectively on decimal
integer and longinteger numbers.

Prime's OTHEFWISE keyword can be
used at the bottom of a CASE
statement to execute an alternative
statement, or group of statements,
if no statement in the list of CASE
statements has been selected.

The EXTERN attribute
(Chapter 9)

The {$E} compiler switch
(Chapters 2 and 9)

The {$A} compiler switch
(Chapter 2)

The {$L} compiler switch
(Chapter 2)

The {$P} compiler switch
(Chapter 2)

When an external, separately com
piled subprogram is declared in
Prime Pascal, it must be declared
with the word EXTERN at the end of
the declaration heading.

External Pascal subprograms can be
separately compiled by including the
{$E+} at the beginning of the
subprogram file. This switch can
a l s o b e u s e d i n t h e c a l l i n g
program's variable declarations so
that the variables can be referenced
by the external subprograms.

The {$A} switch controls the genera
tion of code used to perform array
bounds checking at runtime.

T h e { $ L } s w i t c h c o n t r o l s t h e
printing of source l ines to the
l is t ing fi le at compi le t ime, i f
-LISTING was specified.

The {$P} switch controls page breaks
or page "ejects" in the l ist ing
fi l e .

A-3 Second Edition, Update 1

UPD4303-192

The second parameter 'filename'
in RESET and REWRITE procedures
(Chapter 10)

The CLOSE procedure
(Chapter 10)

The standard data files
INPUT and OUTPUT
(Chapters 6 and 10)

The STRING data type
(Chapter 6 and Appendix B)

19.2

The STRING concatenation
operator (+)
(Chapters 6 and 7)

When input or output data files are
used, your RESET and REWRITE
procedures, which open the files,
s h o u l d h a v e a s t h e i r s e c o n d
parameter the name of the PRIMDS
file that has to be opened for
reading or writing. This filename
must be enclosed in single quotes.
The first parameter is a variable
declared as a FILE type, which is
a s s o c i a t e d w i t h t h e s e c o n d
parameter, 'filename *.

The CLOSE procedure must be used to
close an input or output data file
after it has been opened with RESET
or REWRITE.

The standard data files INPUT and
OUTPUT, when used in a RESET or
REWRITE procedure without the second
p a r a m e t e r ' fi l e n a m e ' w i l l
automatically default to I/O to and
from the terminal. If a file is not
specified in a READ or READLN
statement , the s tandard tex tfi le
INPUT is assumed, whether the
standard textfile INPUT is a file or
the terminal. This also applies to
WRITE, WRITELN, and the standard
textf ile OUTPUT.

The STRING data type makes it easy
to manipulate character strings in
Prime Pascal. It is similar to the
CHARACTER VARYING type in PL/I
Subset G. Unl ike an array of
characters, which must contain a
p r e c i s e n u m b e r o f c h a r a c t e r
elements, STRING allows you to
assign, compare, concatenate, read,
write, and pass character strings
that have a varying number of
elements.

The concatenat ion operator (+)
concatenates two strings into one.
This operator works only on operands
of the STRING data type.

Second Edition, Update 1 A-4

EXTENSIONS AND RESTRICTIONS

Built-in STRING functions
(Chapters 6 and 11)

There are nine built-in functions
that manipulate character strings.
All of these functions, except the
STR function, operate on values of
the STRING data type. The STR
func t ion conver t s an a r ray o f
characters to a string. The UNSTR
function converts a string to an
a r r a y o f c h a r a c t e r s . O t h e r
functions that manipulate str ings
are IJENGTH, INDEX, SUBSTR, DELETE,
INSERT, TRIM, and LTRIM.

19.2

The null string
(Chapter 6)

The null string, which can only be
assigned to character strings of the
STRING data type, is a string that
c o n t a i n s n o c h a r a c t e r s . I t i s
specified by two consecutive single
quotes ''. Although the null string
can be assigned to an existing
string, it cannot be written out.

A-4A Second Edition, Update 1

EXTENSIONS AND RESTRICTIONS

Prime Restrictions

Res t r i c t i on
and Chapter Reference

The keyword PACKED
(Chapter 6)

The PACK and UNPACK procedures
(Chapter 9)

Ident ifier length
(Chapter 4)

FILE OF CHAR
(Chapter 10)

Descr ip t ion

The keyword PACKED is not supported
in Prime Pascal. If PACKED is used,
a severity 1 error will be generated
at compile time.

The standard PACK and UNPACK pro
cedures are not supported in Prime
Pascal. An attempt to use PACK or
UNPACK will generate severity 3
error and cause your program to
f a i l .

Identifiers are limited to 32 sig
nificant characters. An ident ifier
with more than 32 characters will
generate a severity 1 error.

The standard procedures READLN and
WRITELN can only be used on data
contained in files of type FILE OF
C H A R . T h e o t h e r s t a n d a r d
procedures, READ, WRITE, GET, and
PUT, can be used to do all I/O on
files of any other type.

|19.2

A-5 Second Edition, Update 1

Data Formats

OVERVIEW

This appendix illustrates how values of Prime Pascal data types are
represented in storage. For more information on all of the data types,
see Chapter 6. In Prime Pascal, a word consists of 16 bits. Prime
Pascal supports the following data types:

Scalar Data Types

INTEGER
LC3NGINTEGER (Prime extension)
Subrange
REAL
LONGREAL (Prime extension)
CHAR
BOOLEAN
Enumerated

Structured Data Types

ARRAY
REODRD
SET
FILE
STRING (Prime extension) I 19.2

B-l Second Edition, Update 1

UFD4303-192

Pointer Data Type

Pointer

INTEGER TYPE DATA

Integers are 16-bit (one word) twos-complement, fixed-point whole
binary numbers. Integers can hold values within the range -32768 to
+32767. Bit 1 is the sign bit, which indicates whether the integer is
positive or negative. Bits 2-16 are the integer itself.

1 2 16

INTEGER

LOMGINTBGER TYPE DATA

Longintegers are 32-bit (two-word) twos-complement, fixed-point whole
binary numbers that hold values within the range -2147483648 to
+2147483647. Bit 1 is the sign bit, which indicates whether the
longinteger is positive or negative, and bits 2-32 are the longinteger
itself. The LONGINTEGER type is a Prime extension.

1 2 16 32

LONGINTEGER

Second Edition, Update 1 &-2

DATA FORMATS

SUBRANGE TYPE DATA

An INTEGER or LONGINTEGER subrange constant can either be 16-bit I 19,1
(one-word) or 32-bit (two-word) twos-complement, fixed-point whole
binary number respectively. INTEGER subrange constants hold values in
the range -32767..+32768. LONGINTEGER subrange constants can hold 19.l
values within the range -2147483648..+2147483647. The first bit for
every constant is the sign bit. " These representations are the same as
INTEGER and LONGINTEGER. Subrange values of types BOOLEAN and CHAR are 19 1
represented the same way as BOOLEAN and CHAR values are. See the CHAR
and BOOLEAN representations later in this appendix. For more
information on subrange types for BOOLEAN, CHAR, and enumerated type
data, see Chapter 6.

REAL TYPE DATA

REAL numbers are 32-bit (two-word) numbers. Bit 1 is the sign bit,
which indicates whether the number is positive or negative. Bits 2-24
comprise the mantissa (fraction) in floating point (scientific)
representation, and bits 25-32 comprise the exponent.

1 2 16 24 25

mantissa
—r-
REAL

32

exponent

LONGREAL TYPE DATA

LONGREAL numbers are 64-bit (four-word) numbers. Bit 1 is the sign
bit, which indicates whether the number is positive or negative. Bits
2-48 comprise the mantissa (fraction) in floating-point (scientific)
representation, and bits 49-64 comprise the exponent.

1 2

mantissa

1 6 4 8

^ 5
48 49 64

exponent

LONGREAL

19.1

F>-3 Second Edition

DOC4303-191

CHAR TYPE DATA

Each character is represented by one byte (eight bits). When an ASCII
character value is represented, the parity bit is always on.

CHAR

t_ parity on for ASCII

BOOLEAN TYPE DATA

A BOOLEAN value is stored in 16 bits (one-word). If Bit 1 is on (1)
then the value is TRUE. If Bit 1 is off (0) then the value is FALSE.
Bits 2-16 are ignored.

16
BOOLEAN

true(1)/false(0)

ENUMERATED TYPE DATA

Values of an enumerated type are stored as the ordinal numbers of those
values. Each ordinal number of the enumerated type is a 16-bit
(one-word) twos-complement, fixed-point whole binary number. For the
internal representation of an ordinal number, see the INTEGER
representation in this appendix. (Ordinal numbers of an enumerated
type begin at 0 and increment positively.) The first element's ordinal
number is 0, the second element's number is 1, etc.

Second Edition B-4

DATA FORMATS

ARRAY TYPE DATA

The storage capacity and the internal representation of the ARRAY type
data are determined ty the index type (any scalar type except REAL) and
the base type (any type) specified for the elements of the array.

A multidimensional array is represented internally by one row following
another in straight linear fashion. This representation is commonly
called "major order". For example, given the three-dimensional array:

A : ARRAY[1..3,1..3,1..3] OF INTEGER;

the internal representation would look like this:

A[1,1,1] A[1,1,2] A[1,1,3] A[1,2,1] A[1,2,2] A[1,2,3]

MULTIDIMENSIONAL ARRAY

Each element is represented internally according to the index type and
the base type specified for that element.

REODRD TYPE DATA

Storage of the RECORD type elements is allocated contiguously beginning
with the first element (fields). Any ncn-CHM type element of a record
is stored in words while CHAR type elements are stored in bytes.

SET TYPE DATA

Each element of a set is stored in one bit. The ordinal values of SET
elements range from 0 to 255. Therefore, the maximum number of bits
used to represent a SETT type is 256.

0 1 2 255

> 5
SET

B-5 Second Edition

DOC4303-191

FILE TYPE DATA

FILE type data is stored and represented in a file control block.
Within the file control block, a buffer stores data items from a file
as they are input or output.

Specifically, the file control block consists of the following:

• Bit 1 indicates whether the data is input (1) or output (0).

• Bit 2 indicates whether the file is binary (0) or text (1).

• Bit 3 indicates the existence of end-of-line (ECLN). False is 0
and true is 1.

• Bit 4 indicates the existence of end-of-file (EOF). False is 0
and true is 1.

• Bit 5 indicates whether data is valid (1) or invalid (0).

• Bit 6 indicates whether the file control block is active (1) or
inactive (0).

• Bit 7 indicates whether I/O is at the terminal (1) or a PRIMDS
file (0).

• Bit 8 indicates whether the -INTERACTIVE switch is being used to
allow erase and kill characters on terminal input (1) or not
being used (0).

• Bits 9-16 are reserved for future use.

• Bits 17-64 are the pointer to the position in the buffer.

• Bits 65-96 contain the size of the buffer.

• Bits 97-112 are the file unit number.

• Bits 113-128 contain maximum possible number of objects in the
buffer.

• Bits 129-160 contain the size of the object in the buffer.

• Bits 161-1024 contain the filename or pathname.

• Bits 1025-1040 contain the total number of objects in the
buffer.

• Bits 1041 and on are the buffer itself. The size of the buffer
varies according to the type of object in the buffer. The
default size is 128 words (2048 bits) for textfile objects.
This size can be much larger or smaller, depending on the type
of object.

S e c o n d E d i t i o n B - 6

DATA FORMATS

1 2 3 4 5 6 7 8 16

reserved

17

pointer to position in buffer (3 words)

65

longinteger buffer size in bytes (2 words)

97
file unit number (1 word)

113
maximum number of objects in buffer (1 word)

129

longinteger size (in bytes) of object in buffer (2 words)

161

filename or pathname (64 words)

1025
total number of objects in buffer (1 word)

1041

buffer (128 word default for textfiles)

64

96

112

128

160

1024

1040

2048
FILE CONTROL BLOCK

B-7 Second Edition

UPD4303-192

POINTER TYPE DATA

Each value of a pointer type variable is the actual address of the data
to which each variable is pointing. Therefore the storage area for
each pointer variable contains an address.

A pointer is represented in storage by 48 bits (three words).
S p e c i fi c a l l y :

• Bit 1 is the fault code, which determines if the desired data is
found or not found.

• Bits 2 and 3 contain the ring number of the data that is being
pointed to.

• Bit 4 is the extension bit, which indicates whether the pointer
contains a bit offset (three-word pointer) or doesn't contain a
bit offset (two-word pointer).

• Bits 5-16 contain the segment number of the data.

• Bits 17-32 contain the word number of the data within that
segment.

• Bits 33-36 are the bit offset, which allows the pointer to point
to any bit in memory.

• Bits 37-48 are reserved for future storage.

fault code extension bit

V
17

2 I 3

ring
#

16

segment #

word #

bit offset

33 36

reserved

32

37 48

POINTER

Second Edition, Update 1 B-8

E&TA FORMATS

STRING TYPE DATA

The first 16 bits in a string representation are the integer value for
the operational length of the string. This integer is followed by the
string itself. Each character in the string occupies 8 bits (one
byte). The example below shows a string containing the value 'JUNK'.
The operational length is 4. (The STRING data type is a Prime
extension.)

1 1 6 17 24 25 32 33 40 41 48

operational
length

'J' 'U' 'N' 'K'

19.2

STRING

B-9 Second Edition, Update 1

ASCII Character
Set

The standard character set used by Prime is the ANSI, ASCII 7-bit set
with the 8 parity bit always on. Tables C-l and C-2 present the ASCII
nonprinting and printing character sets respectively.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with
devices. The following points are particularly important to Prime
usage:

• Output parity is normally transmitted as zero (space) unless the
device requires otherwise, in which case software will compute
transmitted parity. Seme controllers (MLC) may have hardware to
assist in parity generations.

• Input parity is always represented as a 1 ty hardware and by
standard software. Input drivers are responsible for making the
par i t y b i t su i t the hos t so f tware requ i rements . Seme
controllers (MLC) may assist in parity error detection.

• The Prime internal standard for the parity bit is one, that is,
'200 is added to the octal value.

C - l S e c o n d E d i t i o n

DOC4303-191

Notes to Table C-l

(1) General ly, CR is interpreted as .NL. at the
terminal. In Pascal, however, CR (or LF) always
returns from textfiles as a blank.

(2) .BREAK, at terminal. Relative copy in file; next
byte specifies number of bytes to copy frcm
corresponding position of preceeding line.

(3) Next byte specifies number of spaces to insert.

(4) Next byte specifies number of lines to insert.

S e c o n d E d i t i o n C - 4

ASCII Character
Set

The standard character set used by Prime is the ANSI, ASCII 7-bit set
with the 8 parity bit always on. Tables C-l and C-2 present the ASCII
nonprinting and printing character sets respectively.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with
devices. The following points are particularly important to Prime
usage:

•

•

Output parity is normally transmitted as zero (space) unless the
device requires otherwise, in which case software will compute
transmitted parity. Some controllers (MLC) may have hardware to
assist in parity generations.

Input parity is always represented as a 1 by hardware and by
standard software. Input drivers are responsible for making the
par i t y b i t su i t t he hos t so f tware requ i remen ts . Sane
controllers (MLC) may assist in parity error detection.

The Prime internal standard fee the parity bit is one, that is,
•200 is added to the octal value.

c ~ l S e c o n d E d i t i o n

DOC4303-191

SPECIAL CHARACTERS

The following characters have special meanings in Prime usage:

CTRL-P (octal 220) is interpreted as a .BREAK.

.CR. (octal 215) is interpreted as a newline (.NL.)
" (octal 242) is the default for character erase

? (octal 277) is the default for line kill

\ (octal 334) is interpreted as a logical tab (Editor)

KEYBOARD INPUT

Nonprinting characters may be entered into text using one of Prime's
text editors with the logical escape character and the octal value.
The character is interpreted by output devices according to their
hardware.

For example, typing "207 will enter one character into the text.

Second Edition C-2

ASCII CHARACTER SET

Table C-l

ASCII Character Set (Non-Printing)
(Conforms to ANSI X3.4-1968)

Octal ASCII
Value Char

200 NULL
201 SCH
202 STX
203 ETX
204 EOT
205 ENQ
206 ACK
207 BEL
210 BS
211 HT
212 LF
213 VT
214 FF
215 CR
216 SO
217 SI
220 DLE
221 DC1
222 DC2
223 DC3
224 DC4
225 NAK
226 SYN
227 ETB
230 CAN
231 EM
232 SUB
233 ESC
234 FS
235 GS
236 RS
237 US

Ccmments/Prime Usage

Null character - filler
Start of header (communications)
Start of text (communications)
End of text (communications)
End of transmission (communications)
End of I.D. (communications)
Acknowledge affirmative (communications)
Audible alarm (bell)
Back space one position (carriage control)
Physical horizontal tab
Line feed; ignored as terminal input
Physical vertical tab (carriage control)
Form feed (carriage control)
Carriage return (carriage control) (1)
RRS-red ribbon shift
BRS-black ribbon shift
RCP-relative copy (2)
FHT-relative horizontal tab (3)
HLF-half line feed forward (carriage control)
FOT-relative vertical tab (4)
HLR-half line feed reverse (carriage control)
Negative acknowledgement (communications)
Synchronocity (communications)End of transmission block (communications)
Cancel
End of Medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Control
Char

"6
"A
~B
"C
~D
AE
~F
~G
~H
" I
"J
"K
*L
~M
*N
"0
*P
~Q
~R
~S
*T
~U
"V
"w
Ax
~Y
~Z
~[

C-3 Second Edition

DOC4303-191

Nntfis to Table C-l

(1) General ly, CR is interpreted as .NL. at the
terminal. In Pascal, however, CR (or LF) always
returns from textfiles as a blank.

(2) .BREAK, at terminal. Relative copy in file; next
byte specifies number of bytes to copy from
corresponding position of preceeding line.

(3) Next byte specifies number of spaces to insert.

(4) Next byte specifies number of lines to insert.

S e c o n d E d i t i o n c ~ 4

ASCII CHARACTER SET

Table C-2

ASCII Character Set (Printing)
(Conforms to ANSI X3.4-1968—

1963 Variances are noted)

O c t a l A S C I I O C TA L A S C I I O C TA L A S C I I
Value Character Value Character Value Character

240 . L3P (1) 300 340 * (9)
241 301 341
242 It (2) 302 342
243 (3) 303 343
244 304 344
245 305 345
246 306 346
247 (4) 307 347
250 310 350251 311 351
252 312 352
253 313 353
254 (5) 314 354
255 315 355
256 316 356
257 317 357
260 320 360
261 321 361
262 322 362
263 323 363
264 324 364
265 325 365
266 326 366
267 327 367
270 330 370
271 331 371
272 332 372273 333 373
274 334 374
275 335 375
276 336 "(7) 376 ~ (10)
277 •? (6) 337 _ (8) 377 DEL (11)

c ~ 5 S e c o n d E d i t i o n

DOC4303-191

Notes to Table C-2

(1) Space forward one position

(2) Default terminal usage - erase previous character

(3) £ in British use

(4) Apostrophe/single quote

(5) Comma

(6) Default terminal usage - kill line

(7) 1963 standard "; terminal use - logical escape

(8) 1963 standard <-; underscore "_"

(9) Grave

(10) 1963 standard ESC

(11) Rubout - ignored

S e c o n d E d i t i o n C - 6

Interfacing Pascal to
Other Languages

OVERVIEW

This appendix offers guidelines for interfacing Pascal data types with
compatible data types of other Prime languages.

The key to interfacing compatible data types is storage representation.
For example, a Pascal INTEGER value and a PL/I Subset G Fixed Bin (15)
value are both stored as 16-bit (one-word) whole binary numbers.
Therefore, an INTEGER value can be passed to a Fixed Bin (15) value and
vice versa. In order to interface Pascal to another language
successfully, you should be familiar with how Prime Pascal data types
are represented in storage. (See Appendix B.) You should also be
familiar with the other Prime language and how data types of that
language are represented in storage.

Table D-l matches the compatibility of Prime Pascal data types with the
data types of Prime's PL/I Subset G, FORTRAN 77, FORTRAN IV, ODBCL, and
BASIC/VM. The leftmost column lists the generic storage unit, which is
measured in bits, bytes, or words for each data type. Each storage
unit matches the data types listed to the right on the same row.
Following Table D-l, this appendix briefly discusses data type
compatibility and includes several program examples.

For more information on interfacing Pascal to other languages, as well
as calling Prime's standard subroutines, see the Subroutines Reference
Guide.

D - l S e c o n d E d i t i o n , U p d a t e 1

UPD4303-192

19.2

19.21

Table D-l
Compatible Data Types

GENERIC
UNIT/PMA BASIC/VM COBOL

FORTRAN
IV

FORTRAN
77 PASCAL

PL/I
SUBSET G

1 bit
_— B i t

B i t (l)

16 bits
(one word)

INT OOMP INTEGER
INTEGER*2
LOGICAL

INTEGER*2
LOGICAL*2

INTEGER
BOOLEAN
ENUMERATED

Fixed Bin
Fixed
Bin(15)

32 bits
(two words)

INT*4 INTEGER*4
INTEGER
INTEGER*4
LOGICAL
L0GICAL*4

LONGINTEGER Fixed
Bin(31)

64 bits
(four words)

32-bi t
Float single
precision

REAL REAL
REAL*4

REAL
REAL*4

REAL
Float
Binary

Float
Bin(23)

64-bit
Float double
precision

REAL*8 REAL*8 REAL*8 LONGREAL Float
Bin (47)

128-bit
Float quad
precision

REAL*16

Byte string
(Max. 32767)

INT
DISPLAY(5)
PIC A(n)
PIC 9(n)
PIC X(n)

INTEGER CHARACTER
*n

CHAR
ARRAY
[l..n] OF
CHAR

Char(n)

Varying
character
s t r ing

STRING[n] Char(n)
Varying

48-bits
(three words)

~<type> Pointer

256 bits SET Bit(256)

— Not available.

Second Edition, Update 1 D-2

INTERFACING PASCAL

Note

Whenever you call an external subprogram from a Pascal program,
you must use Prime's EXTERN attribute in the procedure or
function heading. (Chapter 9 discusses external subprograms.)

INTERFACING INTEGER, BOOLEAN, AND ENUMERATED

Pascal's INTEGER, BOOLEAN, and enumerated type values are compatible
w i t h :

• FL/I-G's Fixed Bin(15)

• FORTRAN 77's _NTEGER*2 and L0GICAL*2

• FORERAN IV's INTEGER, INTBGER*2, and LOGICAL

• OOBCL's GQMP

• BASIC/VM'S INT

Each value of any of these data types is stored in 16 bits (one word).

In an enumerated type, the ordinal INTEGER value of each element is
stored. The first element's ordinal value is 0, the second is 1, etc.
Given the following type:

TYPE
OXORS = (RED, YELLOW, GREEN) ;

The ordinal numbers of RED, YELLOW, and GREEN are 0, 1, and 2
respect ive ly.

Here is a Pascal program that passes an element of an enumerated type
to a PL/I-G procedure:

PROGRAM Enumerate;
TYPE

A = (RED, ORANGE, GREEN, BLUE, YELLOW, FURFLE) ;
VAR

X : A;
PROCEDURE M3DIFY_ENUMERATED(VAR Z : A); EXTERN;
BEGIN {main program}

X := BLUE;
IF X = BLUE THEN

WRITELN('X equals BLUE*);
MODIFY_ENUMERATED(X); {PL/I-G procedure is called here}
IF X = YELLOW THEN

WRTTELNCX now equals YELLOW*)
ELSE

WRTTELNCX does not equal YELLOW')
END. {main program}

D - 3 S e c o n d E d i t i o n

DOC4303-191

Here is the PL/I-G procedure that accepts the Pascal enumerated type
value, changes it, and passes it back to the Pascal program:

MODIFY_ENUMERATED : PROCEDURE (DUMMY) ;
DECLARE DUMMY FIXED BIN(15);
DUMMY = DUMMY + 1; /*ordinal value of BLUE changes to YELI_CW*/

END; /*procedure PL1GPR0C*/

INTERFACING LCNGINTBGER

Prime Pascal's extension type LONGINTEGER is compatible with:

• PL/I-G's Fixed Bin(31)

19.1 # ro^11^ 77's INTEGER, INTEGER*4, LOGICAL, and L0GICAL*4
• FORTRAN IV's INTEGER, INTBGER*2, and LOGICAL

• BASIC/VM's INT*4

Each Prime Pascal LONGINTBGER value, and any value of these other data
types, is stored in 32 bits (two words).

INTERFACING REAL

Pascal' s REAL type values are compatible with:

• PL/I-G'S Float Bin(23)

• FORTRAN 77's REAL and REAL*4

• FORTRAN IV s REAL and REAL*4

• BASIC/VM'S REAL

Each Pascal REAL value, and any value of these other data types, is
stored in 32 bits (two words).

S e c o n d E d i t i o n D - 4

INTERFACING PASCAL

INTERFACING LONGREAL

Prime Pascal's extension type LONGREAL are compatible with:

• PL/I-G1s Float Bin(47)

• F O R T R A N 7 7 ' s R E A L * 8 1 9 . 1

• FORTRAN IV'S REAL*8

• BASIC/VM'S REAL*8

Each Prime Pascal LONGREAL value, and any value of these other data
types, is stored in 64 bits (four words).

INTERFACING CHAR AND ARRAY OF CHAR

Pascal's CHAR and ARRAY OF CHAR values are compatible with:

• PL/I-G's Char(n)

• FORTRAN 77 *s CHARACTERS

• FORTRAN IV'S INTEGER

• COBOL's DISFLAY(5), PIC A(n), PIC 9(n), and PIC X(n)

• BASIC/VM's INT

Each Pascal CHAR value, and any value of these other data types, is
stored in eight bits (one byte). Values of an ARRAY OF CHAR, and the
character array values of the other types, are stored as strings of
bytes.

Here is a Pascal program that passes an ARRAY OF CHAR value to Char(n)
in a PL/I-G procedure:

PROGRAM Change_Char_Array;
TYPE

STRING5 = ARRAY[1..5] OF CHAR;
VAR

CHARARRAY : STRING5;
PROCEDURE MDDIEY_CHAR__ARRAY (VAR DUMMY : STRINGS); EXTERN;
BEGIN {main program}

CHARARRAY := 'ABCDE';
NDDIFY_CHAF__ARRAY (CHARARRAY); {PL/I-G procedure is called here}
IF CHARARRAY = 'ABCDZ' THEN

WRITELN ('The array of char was successfully modified')
ELSE

WRITELN ('The array of char was not modified')
END.

D - 5 S e c o n d E d i t i o n

DOC4303-191

Here is the PL/I-G procedure that accepts the Pascal ARRAY OF CHAR
value, changes it, and passes it back to the Pascal program:

MODIFY_CHAR_ARRAY : PROCEDURE (DUMMY);
DECLARE DUMMY CHAR(5);
DUMMY = 'ABCDZ';

END;

INTERFACING POINTER

Pascal's pointer type, which is declared as ^type, is compatible with
PL/I-G's POINTER type. Here is an example of a Pascal program that
passes a pointer value to a PL/I-G procedure:

PROGRAM Test_Pointer ;
TYPE

POINTEE ÎNTEGER = * INTEGER;
VAR

P : POINTH__INTEGER;
PROCEDURE ADD_l_TO_FOINTER (VAR DUMMY : POINTE___INTE)GER); EXTERN;
BEGIN {main program}

NEW(P);
P* := 100;
ADD_l_TO_FOINTER(P); {PL/I-G procedure is called here}
IF P" = 101 THEN

WRITELN ('The integer has been changed')
ELSE

WRITELN('This does not work')
END.

Here is the PL/I-G procedure that accepts the Pascal pointer type
value, changes it, and passes it back to the Pascal program:

ADD_l_TO_FOINTER : PROCEDURE (DUMMY);
DECLARE DUMMY POINTER;
DECLARE I FIXED BIN BASED;
DUMMY -> I = DUMMY -> I + 1;

END;

A pointer type value in Pascal and in PL/I-G is stored in 48 bits
(three words).

S e c o n d E d i t i o n D - 6

INTERFACING PASCAL

INTERFACING SET

Values of Pascal's SET type are compatible with values of FL/I's
Bit(256) type. Each element in a Pascal set is stored in one bit, with
a 256-element limit for each set.

Here is an example of a Pascal program that passes a set to a PL/I-G
procedure:

PROGRAM Pass_set;
TYPE

SET_TYPE = SET OF 0..255;
VAR

A, B, C : SET_TYPE;
PROCEDURE NDDIFY_SE7T(VAR DUMMY : SET_TYPE); EXTERN;
BEGIN {main program}

A := [10, 20, 30];
B := A;
C := A + [40];
IF A = B THEN

WRITELN(*A contains 10, 20, and 30');
NDDIFY_SET(A); {PL/I-G procedure is called here}
IF A = C THEN

WRITELN('A now contains 10, 20, 30, 40')
END.

Here is the FL/I-G procedure that accepts the Pascal set, changes the
contents of that set, and passes back the new set:

MODIFY_SET : PROCEDURE (DUMMY);
DECLARE DUMMY (256) BIT;
DECLARE I FIXED BIN(15) ;
DUMMY(41) = 'l'B;

END;

INTERFACING REOORD

Values of Pascal record fields can be compatible with the fields of
records in other languages. Each field must be compatible with its
counterpart in the other language. For example, if your Fiscal record
has an INTEGER type field and a REAL type field, it would have to match
PL/I-G fields declared as Fixed Bin(15) and Float Bin(23) respectively.

D - 7 S e c o n d E d i t i o n

DOC4303-191

Here is an example of a Pascal program that passes a record with an
INTEGER field, a REAL field, and a Boolean field to a PL/I-G procedure:

PROGRAM Pascal__Modify__Record;
TYPE

REC = REOORD
A : INTEGER;
B : REAL;
C : BOOLEAN

END;
VAR

X : REC;
PROCEDURE MDDIFY_REO0RD (VAR DUMMY : REC); EXTERN;
BEGIN {main program}

X.A := 100;
X.B := 1000.0;
X.C := TRUE;
MODIFY_REO0RD(X); {PL/I-G procedure is called here}
IF ((X.A = 101) AND

(X.B = 1001.0) AND
(X.C = FALSE)) THEN

WRITELN ('Record was correctly modified')
ELSE

WRITELN ('Record was not correctly modified')
END.

Here is the PL/I-G procedure that accepts the Pascal record, changes
the values of the INTEGER, REAL, and Boolean fields, and passes those
new field values back to the Pascal program:

M0DIFY_RE00RD : PROCEDURE (DUMMY);
DECLARE 1 DUMMY,

2 A FIXED BIN(15),
2 B FLOAT BIN(23),
2 C FIXED BIN(15);

DUMMY.A = DUMMY.A + 1; /* 1 is added to the integer */
DUMMY.B = DUMMY.B + 1; /* 1 is added to the real */
DUMMY.C =0; /* the Boolean is changed to FALSE */

END;

S e c o n d E d i t i o n D - 8

INTERFACING PASCAL

INTERFACING STRING

Prime Pascal's STRING type is compatible with PL/I Subset G's CHARACTER
VARYING type. The STRING type is a Prime extension. Here is an
example of a Pascal program that passes a STRING value to a PL/I-G
procedure:

VAR
ST6 : STRING[6] ;

PROCEDURE PASSJSTRING (VAR STR : STRING[6]); EXTERN;
BEGIN {main program}

ST6 := 'PA';
PASS__STRING(ST6); {PL/I-G procedure is called here}
IF ST6 = 'PASCAL' THEN

WRITELN ('Pass') {this will pass}
ELSE

WRITELN ('Fail')
E N D

19.2
Here is the PL/I-G procedure that accepts the Pascal STRING value,
changes it, and passes the new value back to the Pascal program:

PASSJSTRING : PROCEDURE (DUMMY6) ;
DECLARE DUMMY6 CHARACTER(6) VARYING;
DECLARE DUMMY4 CHARACTER(4) VARYING;
DUMMY4 = 'SCAL';
DUMMY6 = DUMMY6 I I DUMMY4;

END;

Note

If your installation does not use Rev. 19.2 Pascal, see the
Subroutines Reference Guide (Rev. 19 or higher) for interfacing
Pascal character strings with PL/I-G CHARACTER VARYING strings.

D - 9 S e c o n d E d i t i o n , U p d a t e 1

INDEX

Index

$ and ! integer operators (Prime
extension) 7-7, A-3

$ and _ in identifiers (Prime
extension) 4-8, A-3

-321 compiler option 2-13

-64V compiler option 2-13

A compiler switch (Prime
extension) 2-16, A-3

Abbreviations, compile option
2-13 to 2-15

ABS function 6-4, 11-1

Actual parameters 4-4, 9-1,
9-2

Allocating dynamic variables
6-32, 6-33

AND operator 7-6

ANSI standard 1-4, 2-12, 4-4,
6-8, C-l to C-6

ARCTAN function 6-6, 11-2

Arithmetic operators 7-2, 7-3

ARRAY OF CHAR 6-17 to 6-19

ARRAY OF CHAR, (Prime extension)
6-18, 6-19

ARRAY storage format B-5

Array storage 6-16, F>-5

ARRAY type 6-14L to 6-20, B-5

Arrays of characters, converting
strings to 6-14C, 6-14D

Arrays:
external 6-16
multidimensional 6-19, 6-20,

B-5

ASCII character set 4-4, 6-8
to 6-10, C-l to C-6

Assignment compatibil ity 8-2,
8-3

X-l Second Edition, Update 1

UPD4303-192

Assignment statement 8-2, 8-3

Auxiliary procedures:
CLOSE (Prime extension)

10-24, A-4
PAGE 10-23, 10-24

BEGIN and END keywords 4-7,
8-4, 8-5

-BIG and -NOBIG compiler options
2-8

Binary (object) file 2-1, 2-4,
2-5, 2-8, 3-1 to 3-7

-BINARY compiler option 2-8

Blanks 4-11, 4-12

Block:
declaration part 5-4 to 5-9
d e fi n i t i o n 4 - 2
description 5-3, 5-4
executable part 5-9 to 5-11
i l l u s t r a t i o n 4 - 3

BOOLEAN operators 7-6

BOOLEAN storage format B-4

BOOLEAN type 6-8, B-4

Boundary-spanning object code
9-5

Call, recursive 9-19 to 9-22

Calling subprograms:
externa l 9-16
funct ions 9-14
procedures 8-3, 8-4, 9-10,

9-11

Cardinality, data type 6-1

CASE and variant records 6-23
to 6-25

CASE statement 8-11 to 8-14

Changing compiler option
de fau l ts 2 -6

Changing erase and kill
characters 10-4

CHAR storage format B-4

CHAR type 6-8 to 6-10, B-4

Character set (See ASCII
character set)

Character string constants
4-11, 6-9

Character strings 4-11, 6-14
to 6-14L, 6-17 to 6-19, D-5,

D-6

CHR function 6-8 to 6-10, 11-3

CLOSE procedure (Prime
extension) 6-30, 10-7, 10-12,

10-24, A-4

Closing data files 6-30, 10-7,
10-12, 10-24, A-4

Code, object:
boundary-spanning 9-5
ord inary 9 -5

Collating sequence 6-8, C-3 to
C-6

Command files 3-8

Command level, PRIMDS 2-2,
2-3, 2-5, 3-2 to 3-8

Command line:
options 2-1, 2-2, 2-6 to 2-15
Pascal compiler 2-2

Comments 4-11, 4-12

Compatibility with other
languages 1-6, 9-1, 9-15 to

9-18, D-l to D-9

Compile-time errors 2-1 to 2-4

Compiler switches:
A switch 2-16, A-3
E switch 2-9, 2-17, 6-16,

6-22, 9-16 to 9-18, A-3

Second Edition, Update 1 X-2

INDEX

L switch 2-16, A-3
overview 2-16, 4-12
P switch 2-17, A-3

Compiler:
error messages 1-4, 2-1 to

2-4
filename conventions 2-4,

2-5, 3-2 to 3-8
invok ing 2-2
option abbreviations 2-13 to

2-15
options 2-1, 2-2, 2-6 to 2-15
PASCAL command 2-2
switches 2-9, 2-16, 2-17,

4-12, 6-16, 6-22, 9-16 to
9 - 1 8 , A - 3

Compiling programs 2-1 to 2-17

Compound statement 8-4, 8-5

Concatenation operator (Prime
extension) 6-14E to 6-14F,

7-7, 7-7A, A-4A

Conditional statements:
CASE 8-11 to 8-14
IF 8-10, 8-11

OONST declaration 5-6

Constants:
BOOLEAN 4-9, 6-8
CHAR 4-11, 6-9
character string 4-11, 6-9
declared 5-6
enumerated 6-11, 6-12
INTEGER and LONGESfTEGER 4-10,

6-4, 6-5
MAXINT 4-9, 6-3
NIL 6-32, 6-33, 7-1
numeric 4-8, 4-10
REAL and LONGREAL 4-10, 6-6,

6-7
standard 4-9
STRING 4-11
subrange 6-13, 6-14

Control (nonprintable)
characters 6-8, 11-3, 11-4,

C-5, C-6

Control statements:
CASE 8-11 to 8-14
FOR 8-8, 8-9
GOTO 8-14, 8-15
IF 8-10, 8-11
nested 8-5, 8-7, 8-9 to 8-11
REPEAT 8-6
WHILE 8-7, 8-8

Control-C end-of-file marker
10-22

Conventions, filename (See
Filename conventions)

CDS function 6-6, 11-1

CPL files 3-8

Creating data files:
input 10-6 to 10-11
output 10-11 to 10-14

Creating dynamic variables
6-32, 6-33

Data file I/O 6-30, 10-6 to
10-24

Data files:
closing 6-30, 10-7, 10-12,

10-24, A-4
creating 10-6 to 10-14
opening 6-30, 10-6 to 10-14

Data format (See Storage
format)

Data type cardinality 6-1

Data types:
ARRAY 6-14 to 6-10, B-5
BOOLEAN 6-8, B-4
CHAR 6-8 to 6-10, B-4
enumerated 6-10 to 6-12, B-4
FILE 6-27 to 6-31, 10-6 to

10-24, B-6, B-7
i l l u s t r a t i o n 6 - 2
INTEGER 6-3, 6-4, B-2
interfacing with other

languages D-l to D-8
LONGINTEGER (Prime extension)

6-4, 6-5, A-1, B-2
LONGREAL (Prime extension)

X-3 Second Edition, Update 1

UPD4303-192

6-7, A-1, B-3
overview 6-1
pointer 6-31 to 6-33, EV-8
REAL 6-6, EV-3
RECORD 6-20 to 6-25, B-5
SET 6-25 to 6-27, Br-5
standard scalar 6-2 to 6-10
storage formats B-l to B-8
STRING (Prime extension) 6-14

to 6-14L, A-4A, B-9, D-9
structured 6-14 to 6-31
subrange 6-12 to 6-14, EH3
TEXT 6-29, 10-10
user-defined scalar 6-10 to

6-14

-DEBUG and -NODEBUG compiler
opt ions 2-8

Debugger utility 1-5, 2-6 to
2-8, 2-14

Decimal notation 4-10, 6-6,
6-7, 10-21

Declarat ions:
CONST 5-6
description 5-3, 5-4
LABEL 5-4, 5-5
order of (Prime extension)

5-3, A-2
PROCEDURE and FUNCTION 5-9
TYPE 5-6, 5-7
VAR 5-7 to 5-9

Default field widths 10-20

Default options 2-6

DELETE function (Prime
extension) 6-14J to 6-14L,

11-5, A-4A

Delimiters, comment 4-12

Designator, function 9-14

Destroying dynamic variables
6-32, 6-33

Di rec t i ves :
EXTERN 4-9, 9-15, A-3
FORWARD 4-9, 9-15

DISPOSE procedure 6-32

DIV operator 6-4, 7-3

Documents related to Pascal
1-4, 1-5

Dollar signs and underscores in
ident ifiers 4-8 , A-3

Dynamic allocation procedures:
DISPOSE 6-32
NEW 6-32

Dynamic storage 6-32, B^8

Dynamic variables 6-31 to 6-33

E compiler switch (Prime
extension) 2-9, 2-17, 6-16,
6-22, 9-16 to 9-18, A-3

EDITOR 1-4, 1-5, 10-6, 10-8 to
10-10

Elements, Pascal language 4-1
to 4-12

EMACS editor 1-5, 10-6, 10-8
to 10-10

Empty record 6-25

Empty set 6-26

Empty statement 8-5

END and BEGIN keywords 4-7,
8-4, 8-5

End of File (EOF) condition
10-22, 10-23

End of Line (EOLN) condition
10-23

Enumerated storage format B-4

Enumerated type 6-10 to 6-12,
B-4

EOF function 10-22, 11-5

Second Edition, Update 1 X-4

INDEX

EOLN function 10-23, 11-5

Erase and kill characters:
changing 10-4
overview 10-4
using on terminal input 10-4

to 10-6
with -INTERACTIVE switch 10-4

to 10-6

Erasing terminal input 10-4 to
10-6

Error messages:
compile time 2-1 to 2-4
for %INCLUDE files 2-3, 2-4
for -INTERACTIVE switch 10-5
for data types 6-5, 6-7, 6-12

to 6-14, 6-19, 6-27, 11-2
for external subprograms 9-18
for identifiers 4-8, A-5
for keyword PACKED 6-14, A-5
for labels 5-5
for non-ANSI standard 2-12
for PACK and UNPACK 9-12, A-5
for parameters 9-4
for standard functions 6-12,

11-2
format of 2-2
in l ist ing file 2-10
loading 3-3, 3-6
overview 1-4
runtime 2-11, 3-3, 3-6, 6-12,

10-5
severity codes 2-3
s i gn i ficance 2 -3
suppressing of 2-8, 2-12

-ERRTTY and -NOERRTTY compiler
op t ions 2 -8

Executable (SEG) file 2-5, 3-2
to 3-8

Executable block part 5-9 to
5-11

Executable statements 5-9 to
5-11, 8-1 to 8-16

EXECUTE (load subprocessor)
command 3-8

Executing programs 3-7, 3-8

EXP function 6-6, 11-2

-EXPLIST and -NOEXPLIST compiler
op t ions 2 -9

Exponents 4-10, 6-6, 6-7,
10-20, B-3

Expressions 7-1 to 7-8

Extensions (See Prime
extensions)

EXTERN (Prime extension)
direct ive 9-15, A-3

-EXTERNAL and -N3EXTERNAL
compiler options 2-9, 9-17

External arrays 6-16

External procedures and
functions (See External
subprograms)

External records 6-22

External subprograms:
c a l l i n g 9 - 1 6
declaring 9-15, 9-16, 9-18
EXTERN (Prime extension)

directive 9-15, 9-16, A-3
from l ibraries 9-19
overview 9-1, 9-15
written in other languages

9-18, D-l to D-8
written in Pascal 9-16 to

9-18

External variables 9-17

Field widths 10-18 to 10-22

Fields, variant 6-23 to 6-25

File control block B-6, B-7

File I/O 6-30, 10-6 to 10-24

FILE OF CHAR 6-28 to 6-31,
10-8 to 10-12

X-5 Second Edition, Update 1

UPD4303-192

FILE OF CHAR, reading and
writing of 10-9, A-5

FILE OF INTEGER 6-28, 6-29,
10-8, 10-9

FILE OF REAL 6-28, 6-29, 10-8,
10-9

FILE storage format B-6, Br-7

File storage B-6, Br-7

FILE type 6-27 to 6-31, 10-6
to 10-24, B-5

File variables 6-27 to 6-31,
10-6 to 10-24

File-handling functions:
EOF 10-22, 11-5
EOLN 10-23, 11-5

File-handling procedures:
CLOSE (Prime extension) 6-30,

10-7, 10-12, A-4, 10-2
GET 10-15
PAGE 10-23, 10-24
PUT 10-18
READ 10-15 to 10-17
REAELN 10-17
RESET 10-6 to 10-10
REWRITE 10-11 to 10-13
WRITE 10-18 to 10-21
WRITELN 10-22

Filename conventions:
overview 2-4
prefix 2-5, 3-4 to 3-7
suffix 2-5, 3-2 to 3-4, 3-7
t a b l e 3 - 7

Filename in RESET and REWRITE
(Prime extension) 10-6 to
10-14, A-4

Files, data (See Data files)

F i l e s :
.INCLUDE 2-3, 2-4, 5-10,

5-11, A-2
(See also Textfiles)
closing 6-30, 10-7, 10-12,

10-23, A-4

of CHAR 6-28 to 6-31, 10-8 to
10-12

of INTEGER 6-28, 6-29, 10-8,
10-9

of REAL 6-28, 6-29, 10-8,
10-9

opening 6-30, 10-6 to 10-14
PRIMDS input/output 6-27 to

6-31, 9-16 to 9-18, 10-1,
10-5 to 10-24

standard INPUT 4-9, 6-31,
10-5, 10-10, 10-11, 10-16,
10-17, A-4, 10-22

standard OUTPUT 4-9,6-31,
10-13, 10-14, 10-18, 10-22,
10-23, A-4

storage of data EH>, Br-7

Fixed variant record part 6-23

FOR statement 8-8, 8-9

Formal parameters 4-4, 9-2,
9-3

Format, line 4-11

FORWARD directive 9-15

Forward procedures and functions
9-14, 9-15

-FRN and -NOFRN compiler options
2-9

FUNCTION declaration 5-9,
9-13, 9-15

Function designator 9-14

Functions:
(See also Subprograms)
dec larat ions 9-13
external 9-15 to 9-19
forward 9-14, 9-15
heading 9-13, 9-15
I/O 10-14 to 10-24
invoking 9-14
overview 9-1, 9-12
recursive 9-19 to 9-22
standard 4-9, 6-4 to 6-12,

9-14, 10-1, 10-15, 10-22,
10-23, 11-1 to 11-5

STRING 6-14C, 6-14D, 6-14J to

Second Edition, Update 1 X-6

INDEX

6-14L, 11-5, A-4A

GET procedure 10-15

Global:
definition 4-2, 5-8, 9-10
external variables 9-17
i l l u s t r a t i o n 4 - 3

GOTO statement 5-5, 8-14, 8-15

Graphic (printable) characters
6-8 to 6-10, 11-3, 11-4, C-5,
C-6

Heading:
ex te rna l 9 -15
function 9-13, 9-15
procedure 9-9, 9-15
program 5-1 to 5-3

I/O at terminal 6-29, 6-30,
10-2 to 10-6

I/O procedures and functions:
CLOSE (Prime extension) 10-24
EOF 10-22, 11-5
EOLN 10-23, 11-5
GET 10-15
overview 10-1, 10-14
PAGE 10-23, 10-24
PUT 10-18
READ 10-15 to 10-17
REAELN 10-17
RESET 10-6 to 10-10
REWRITE 10-11 to 10-13
WFOTE 10-18 to 10-21
WRITELN 10-22

Identifier length (Prime
rest r ic t ion) 4-7 , A-5

I d e n t i fi e r s :
dollar signs and underscores in

(Prime extension) 4-8, A-3
standard 4-8, 4-9
user-defined 4-8

IF statement 8-10, 8-11

IN operator 6-27, 7-4

INCLUDE files 2-3, 2-4, 5-10,
5-11, A-2

INDEX function (Prime extension)
6-14J to 6-14L, 11-5, A-4A

Index, array 6-14, 6-15

INPUT and OUTPUT, use of 6-31,
10-11, 10-13, A-4

Input and output:
overview 10-1
procedures and functions

10-14 to 10-24
to and from data files 6-30,

10-6 to 10-24
to and from terminal 6-30,

10-2 to 10-6

-INPUT compiler option 2-9

INPUT, standard textfile 4-9,
6-31, 10-5, 10-10, 10-11,
10-16, 10-17, 10-22, 10-23

INSERT function (Prime
extension) 6-14J to 6-14L,

11-5, A-4A

Integer (Prime extension)
operators 7-7, A-3

INTEGER storage format B-2

INTEGER type 6-3, 6-4, B-2

-IMERACriVE switch (Prime
extension) 10-4 to 10-6, A-2,

B-6

Interfacing Pascal to other
languages:

ARRAY OF CHAR interface D-5
BOOLEAN interface D-3
CHAR interface D-5
compatibi l i ty table D-2
enumerated interface D-3
INTEGER interface D-3
L0NGIMEGER interface D-4
LONGREAL interface D-5
overview 1-6, 9-1, 9-15 to

9-18, D-l, D-2
pointer interface D-6

X-7 Second Edition, Update 1

UPD4303-192

REAL interface D-4
REOORD interface D-7 to D-8
SET interface D-7
STRING interface D-9

Internal representations (See
Storage format)

Invoking external subprograms
9-16

Invoking functions 9-14

Invoking procedures 8-3, 8-4,
9-10, 9-11

Invoking the compiler 2-2

Keywords 4-7

Kill character (See Erase and
kill characters)

L compiler switch (Prime
extension) 2-16, A-3

LABEL declaration 5-4, 5-5

Language elements 4-1 to 4-12

Language interfaces 1-6, 9-1,
9-15 to 9-18, D-l to D-9

LENGTH function (Prime
extension) 6-14J to 6-14L,

11-5, A-4A

L ib ra r ies :
loading 3-1 to 3-6
Prime system 3-1 to 3-6, 9-19

LIBRARY (load subprocessor)
command 3-2

Library, Pascal 3-1 to 3-6

Line format 4-11

-LISTING compiler option 2-10

Listing file (See Source
l i s t i ng fi l e)

LN function 6-6, 11-1

LOAD (load subprocessor) command
3-2

-LOAD (SEG option) 3-2

Load subprocessor commands:
EXECUTE 3-8
LIBRARY 3-2
LOAD 3-2
QUIT 3-2

LOAD utility 1-5, 2-5, 3-1 to
3-8

Loading programs:
overview 3-1, 3-2
with prefix method 3-4 to 3-6
with suffix method 3-3, 3-4

Loading subprograms 3-1, 3-3
to 3-6, 9-18

Local *
definition 4-4, 5-8, 9-10
external variables 9-17
recursive variables 9-19

LCM3INTEGER storage format
(Prime extension) Br-2

I/3SJGINTEGER type (Prime
extension) 6-4, 6-5, A-1, B-2

LONGREAL storage format (Prime
extension) B-3

LONGREAL type (Prime extension)
6-7, A-1, B-2

LTRIM function (Prime extension)
6-14J to 6-14L, 11-5, A-4A

-MAP and -ND_MAP compiler
opt ions 2-10

MAXINT 4-9, 6-3

Messages:
end-of-compilation 2-2, 2-3
error (See Error messages)

Second Edition, Update 1 X-8

INDEX

MOD operator 6-4, 7-3

Multidimensional arrays 6-19,
6-20, B-5

Nested statements:
defined 8 -5
FOR 8-9
IF 8-10, 8-11
WHILE 8-7

NEW procedure 6-32

NIL 6-32, 6-33, 7-1

Non-ANSI standard errors 2-12

Nonprintable (control)
characters 6-8, 11-3, 11-4,

C-5, C-6

NDT operator 7-6

Notation:
decimal 4-10, 6-6, 6-7, 10-21
scient ific 4-10, 6-^, 6-7,

10-20, B-3

Null program 5-4

Null string 6-14B, A-4A

Numeric constants 4-8, 4-10

Object (binary) file 2-1, 2-4,
2-5, 2-8, 3-1 to 3-7

ODD function 11-5

-OFFSET and -NOOFFSET compiler
opt ions 2-10

Opening data files:
input 6-30, 10-6 to 10-11
output 6-30, 10-11 to 10-14
RESET 10-6 to 10-10

Operands 7-1, 7-2

Operator precedence 7-7

Operator, string concatenation
(Prime extension) 6-14E,

6-14F, 7-7, 7-7A, A-4

Operators, arithmetic:- 6-4, 6-6, 7-3
* 6-4, 6-6, 7-3
+ 6-4, 6-6, 7-3
/ 6-6, 7-3
DIV 6-4, 7-3
MDD 6-4, 7-3

Operators, BOOLEAN:
AND 7-6
NOT 7-6
OR 7-6

Operators, integer (Prime
extension):
! 7 - 7
& 7-7

Operators, relat ional:
< 6-4, 6-8, 6-10, 6-12, 7-4
<= 6-4, 6-8, 6-10, 6-12,

6-27, 7-4
<> 6-4, 6-8, 6-10, 6-12,

6-27, 7-4
= 6-4, 6-8, 6-10, 6-12, 6-27,

7-4
> 6-4, 6-8, 6-10, 6-12, 7-4
>= 6-4, 6-8, 6-10, 6-12,

6-27, 7-4
IN 6-27, 7-4

Operators, SET:- 6-26, 7-5
* 6-26, 7-5
+ 6-26, 7-5

Operators:
ar i thmetic 7-2, 7-3
BOOLEAN 7-6
defined 7 -1
integer (Prime extension) 7-7
order of evaluation 7-8
precedence of 7-7
re la t ional 7-3, 7-4
SET 6-26, 6-27, 7-4, 7-5
string concatenation (Prime

extension) 6-14E, 6-14F,
7-7, 7-7A, A-4

-OPT1 and -NDOPT1 compiler
op t ions 2 -11

X-9 Second Edition, Update 1

UPD4303-192

-0FT3 and -ND0FT3 compiler
op t ions 2 -11

-OPTIMIZE and -NOOPTIMIZE
compiler options 2-11

Optional program heading (Prime
extension) 5-1, A-2

Options, compiler:
abbreviations 2-13 to 2-15
-BIG and -NOBIG 2-8
-BINARY 2-8
commonly used 2-7
-DEBUG and -NDDEBUG 2-8
de fau l t s 2 -6
-ERRTTY and -NOERRTTY 2-8
-EXPLIST and -NOEXPLIST 2-9
-EXTERNAL and -NDEXTERNAL

2-9, 9-17
-FRN and -NDFRN 2-9
-INPUT 2-9
-LISTING 2-10
-MAP and -N0_MAP 2-10
not commonly used 2-7
-OFFSET and -NDOFFSET 2-10
-OPT1 and -NDOETl 2-11
-OET3 and -N0OPT3 2-11
-OETIMIZE and -NDOFTIMIZE

2-11
-PRODUCTION and -NDPRODUCTION

2-11
-RANGE and -NORANGE 2-11
-SILENT and -NDSILENT 2-12
-SOURCE 2-12
-STANDARD and -NDSTANDARD

2-12
-STATISTICS and -NOSTATISTICS

2-12
-UPCASE 2-13
-XREF and -NDXREF 2-13

OR operator 7-6

ORD function 6-10, 6-12, 11-3

Order of declarations (Prime
extension) 5-3, A-2

Order of evaluation 7-8

Ordinal values 6-8 to 6-12,
11-3, 11-4

OTHERWISE (Prime extension)
clause 8-11, 8-14, 8-15, A-3

OUTPUT, standard textfile 4-9,
6-31, 10-13, 10-14, 10-18,
10-22, 10-23, A-4

P compiler switch (Prime
extension) 2-17, A-3

PACK and UNPACK procedures
(Prime restr ict ions) 9-12,

A-5

Packed arrays 6-14, 6-17, A-5

PACKED keyword (Prime
restriction) 6-14, 6-17, A-5

Page breaks in listing file
2-17, A-3

PAGE procedure 10-23, 10-24

Parameters:
actual 4-4, 9-2
array variable 9-5
formal 4-4, 9-2, 9-3
overview 4-4, 9-1, 9-2
procedures and functions passed

as 9-6 to 9-9
record variable 9-5
va lue 9-3
variable 9-3, 9-4

PASCAL command 2-2

Pascal:
ANSI standard 1-4, 2-12, 4-4,

6-8, C-l to C-6
arithmetic operators 7-2, 7-3
ASCII character set 4-4, 6-8

to 6-10, C-l to C-6
blanks 4-11, 4-12
BOOLEAN operators 7-6
character strings 4-11, 6-14

to 6-14L, 6-17 to 6-19, D-5,
D-6

comments 4-11, 4-12
compiler 2-1 to 2-17
data storage formats B-l to

B-8
data types 6-1 to 6-34
expressions 7-1 to 7-8

Second Edition, Update 1 X-10

INDEX

identifiers 4-7 to 4-9
input and output 10-1, 6-27

to 6-31
instruction books 1-1
integer operators 7-7
keywords 4-7
language elements 4-1 to 4-12
language interfaces D-l to

D-8, 1-6, 9-1, 9-15 to 9-18
library 3-1 to 3-6
line format 4-11
numeric constants 4-8
operands 7-1, 7-2
operator precedence 7-7, 7-8
operators 7-2 to 7-8
parameters 9-2 to 9-9
Prime extensions 1-2, A-1 to

A-4
Prime Pascal 1-2
Prime restrictions 1-2, A-5
procedures and functions 9-1

to 9-22
program structure 5-1 to 5-15
punctuation symbols 4-5, 4-6
related documents 1-4, 1-5
relational operators 7-3, 7-4
separators 4-11
set operators 7-5
standard functions 4-9, 6-4

to 6-12, 9-14, 10-1, 10-15,
10-22, 10-23,

standard procedures 9-12,
10-1, 10-7, 10-11, 10-14 to
10-24

statements 8-1 to 8-16
storage requirements 6-17,

6-22, 6-32, B-l to B-9, D-l,
D-2, 6-16

Pass-by-reference parameters
9-3, 9-4

Pass-by-value parameters 9-3

PMA (See Prime Macro Assembler)

Pointer data type 6-31 to
6-33, B-8

Pointer storage format EH8

Precedence of operators 7-7

PRED function 6-10, 6-12, 11-4

P r e fi x :
execut ing fi le 3-7
filename conventions 2-5, 3-4

to 3-7
loading procedure 3-4 to 3-7

Prime extensions to standard
Pascal:

$ and _ in identifiers 4-8,
A-3

.INCLUDE files 2-3, 2-4,
5-10, 5-11, A-2

& and I integer operators
7-7, A-3

A compiler switch 2-16, A-3
ARRAY OF CHAR enhancement

6-18, 6-19, A-2
CLOSE procedure 6-30, 10-7,

10-12, 10-23,
comment delimiters /* */ 4-11,

A-2
E compiler switch 2-9, 2-17,

6-16, 6-22,
EXTERN directive 9-15, A-3
Filename in RESET and

REWRITE 10-6 to 10-24, A-4
-INTERACTIVE switch 10-4 to

10-6, A-2, B-6
L compiler switch 2-16, A-3
LONGINTEGER type 6-4, 6-5,

A-1
LONGREAL type 6-7, A-1, B-3
optional program heading 5-1,

A-2
order of declarations 5-3,

A-2
OTHERWISE clause 8-11, 8-14,

8-15, A-3
P compiler switch 2-17, A-3
string concatenation operator

6-14E, 6-14
STRING data type 6-14 to

6-14L, A-4, A-4A, D-9
STRING functions 6-14C, 6-14D

6-14J to 6-14L, 11-5, A-4A
string, null 6-14B, A-4A
-TTY switch 10-5, 10-11,

10-14, A-2

Prime Macro Assembler 1-6,
2-9, 9-18

X - l l Second Edition, Update 1

UPD4303-192

Prime Pascal:
ASCII character set 6-8 to

6-10, C-l to C-6
compiler 2-1 to 2-17
defined 1 -2
extensions 1-2, A-1 to A-4A
library 3-1 to 3-6, 9-19
related documents 1-4, 1-5
restr ict ions 1-2, A-5

Prime restrictions to standard
Pascal:

FILE OF CHAR, reading/writing
of 10-9, A-5

identifier length 4-7, A-5
PACK procedure 9-12, A-5
PACKED keyword 6-14, 6-17,

A-4
UNPACK procedure 9-12, A-5

Prime:
debugging utility 1-5, 2-6 to

2-8, 2-14
documents related to Pascal

1-4, 1-5
filename conventions 2-4,

2-5, 3-2 to 3-8
high-level languages 1-4,

1-6, 9-1, 9-15 to 9-18, D-l
to D-8

input and output 10-1 to
10-24

libraries 3-1 to 3-6, 9-19
SEG loading utility 1-5, 3-1

to 3-8, 2-5
subroutines 1-5, 9-19
text editors 1-4, 1-5, 10-6,

10-8 to 10-10

2-2, 2-3, 2-5,
PRIMDS:

command level
3-2 to 3-8

data files 6-27 to 6-31,
10-1f 10-5 to 10-24, 9-16 to
9-18

erase and kill characters
10-4 to 10-6

file variables 10-7, 10-8,
10-13

PASCAL command 2-2, 9-17
SEG command 3-2
subroutines 1-5, 9-19
user file directories 6-27,

10-6 to 10-8, 10-12

Printable (graphic) characters
6-8 to 6-10, 11-3, 11-4, C-5,
C-6

PROCEDURE declarations 5-9, 9-9,
9-10, 9-15

Procedure statement 8-3, 8-4,
9-10, 9-11

Procedures:
(See also Subprograms)
declarations 5-9, 9-9, 9-10
dynamic allocation 6-32
external 9-15 to 9-19
forward 9-14, 9-15
heading 9-9, 9-15
I/O 10-14 to 10-24
invoking 8-3, 8-4, 9-10, 9-11
overview 9-1, 9-9
recursive 9-19 to 9-22
standard 4-9, 6-32, 9-12,

10-1, 10-7, 10-11, 10-14 to
10-24

-PRODUCTION and -NOPRODUCTION
compiler options 2-11

Program definition 4-2

Program heading:
d e fi n i t i o n 4 - 2
description 5-1 to 5-3

Program structure:
declaration part 5-3 to 5-9
executable part 5-9 to 5-15
heading 5-1 to 5-3
overview 5-1

Program unit definition 4-2

Program, null 5-4

Punctuation symbols 4-5, 4-6

PUT procedure 10-18

QUIT (load subprocessor) command
3-2

-RANGE and -NORANGE compiler
opt ions 2-11

Second Edition, Update 1 X-12

INDEX

READ procedure 10-15 to 10-17

Reading arrays 6-14 to 6-19

REAELN procedure 10-17

REAL storage format B-3

REAL type 6-6, B-3

REOORD storage format B-5

Record storage 6-22, B-5

REOORD type 6-20 to 6-25, B-5

Records:
empty 6-25
ex te rna l 6 -22
using WITH 6-22, 6-23
variant 6-23 to 6-25

Recursive procedures and
functions 9-19 to 9-22

Relational operators 7-3, 7-4

REPEAT statement 8-6

Repetitive statements:
FOR 8-8, 8-9
REPEAT 8-6
WHILE 8-7, 8-8

RESET procedure 10-6 to 10-10

Restrictions (See Prime
r e s t r i c t i o n s)

ROUND function 6-4, 11-2

RUNOFF utility 1-4, 1-5

Runtime errors 2-11, 3-3, 3-6,
6-12, 10-5

Scalar data types:
standard 6-2 to 6-10
user-defined 6-10 to 6-14

Scientific notation 4-10, 6-6,
6-7, 10-20, B-3

Scope, definit ion 4-4

SEG command 3-2

SEG loading utility 1-5, 2-5,
3-1 to 3-8

Separators 4-11

SET operators 6-26, 6-27, 7-4,
7-5

SET storage format B-5

SET type 6-25 to 6-27, B-5

Set, empty 6-26

Severity codes 2-3

-SILENT and -NOSILENT compiler
opt ions 2-12

SIN function 6-6, 11-1

-SOURCE compiler option 2-12

Source listing file 2-1, 2-2,
2-4, 2-5, 2-10, 3-4 to 3-7

Source program file 2-1 to
2-6, 3-2, 3-4, 3-6, 3-7

SQR function 6-4, 11-1

SQRT function 6-6, 11-2

-STAND&RD and -NOSTANDARD
compiler options 2-12

Standard constants 4-9

Standard functions (See
Functions)

Standard identifiers 4-8, 4-9

Standard procedures (See
Procedures)

Standard scalar data types 6-2
to 6-10

X-13 Second Edition, Update 1

UPD4303-192

Standard textfiles (See
and OUTPUT)

INPUT

Statements, declaration (See
Declarations)

Statements, executable:
assignment 8-2, 8-3
compound 8-4, 8-5
control 8-5 to 8-15
empty 8-5
function designator 9-14
overview 8-1
procedure 8-3, 8-4
WITH 8-16

Statements, nested (See Nested
statements)

Static variables 6-31

-STATISTICS and -NOSTATISTICS
compiler options 2-12

Storage format:
ARRAY B-5
CHAR B-4
enumerated B-4
file control block B-6, B-7
FILE B-6, &-7
INTEGER B-2
LONG-NTEGER (Prime extension)

B-2
LONGREAL (Prime extension)

Br-3
pointer Br-8
REAL B-3
RECORD B-5
SET B-5
STRING (Prime extension) Br-9
subrange B-3

Storage:
array capacity 6-16
compatibility D-l to D-8
data formats B-l to B-8
dynamic 6-32
il lustrations B-l to B-8
in other languages D-l
record capacity 6-22

STR function (Prime 'extension)
6-14C, 6-14D, 6-14J to 6-14L,
11-5, A-4A

STRING data type (Prime
extension) 6-14 to 6-14L,

A-4, A-4A, D-9

STRING functions (Prime
extension):

DELETE 6-14J to 6-14L, 11-5,
A-4A

INDEX 6-14J to 6-14L, 11-5,
A-4A

INSERT 6-14J to 6-14L, 11-5,
A-4A

LENGTH 6-14J to 6-14L, 11-5,
A-4A

LTRIM 6-14J to 6-14L, 11-5,
A-4A

STR 6-14C, 6-14D, 6-14J to
6-14L, 11-5, A-4A

SUBSTR 6-14J to 6-14L,
11-5, A-4A

TRIM 6-14J to 6-14L, 11-5,
A—4A

UNSTR 6-14C, 6-14D, 6-14J to
6-14L, 11-5, A-4A

STRING storage format Br-9

Strings (Prime extension):
(See also Character strings)
arrays converted to 6-14C,

6-14D
assigning 6-14B to 6-14D
comparing 6-14E
concatenating 6-14E, 6-14F,

7-7, 7-7A
converting arrays to 6-14C,

6-14D
declar ing 6-14A
interfacing other languages

w i th D-9
null 6-14B, A-4A
passing to procedures and

functions 6-141, 6-14J
reading and writing 6-14G to

6-141
vs. arrays of characters

6-17

Structured data types 6-14 to
6-31

Second Edition, Update 1 X-14

INDEX

Subprograms, external (See
External subprograms)

Subprograms:
(See also Procedures and

funct ions)
defined 4-2, 9-1
external 9-15 to 9-19
forward 9-14, 9-15
from l ibraries 9-19
recursive 9-19 to 9-22
written in other languages

9-18, D-l to D-8

Subrange storage format B-3

Subrange type 6-12 to 6-14,
B-3

Subroutines 1-5, 9-19

SUBSTR function (Prime
extension) 6-14J to 6-14L,

11-5, A-4A

SUCC function
11-3, 11-4

6-10 to 6-12,

S u f fi x :
execut ing file 3-7
filename conventions 2-5, 3-2

to 3-4, 3-7
loading procedure 3-2 to 3-4

Suppressing error messages 2-8,
2-12

Switches (Prime extension):
-INTERACTIVE 10-4 to 10-6,

A-2, B-6
-TTY 10-5, 10-11, 10-14, A-2

Switches, compiler (See
Compiler switches)

Terminal I/O 6-29, 6-30, 10-2
to 10-6

Text editors, Prime 1-4, 1-5,
10-6, 10-8 to 10-10

TEXT type 6-29, 10-10

Textbooks, Pascal instruction
1-1

Te x t fi l e s :
closing 6-30, 10-7, 10-12,

10-23, A-4
defined 6-29, 10-8
opening 6-30, 10-6 to 10-14
standard INPUT 4-9, 6-31,

10-5, 10-10, 10-11, 10-16,
10-17, 10-22,

standard OUTPUT 4-9, 6-31,
10-13, 10-14, 10-18, 10-22,
10-23, A-4

TRIM function (Prime extension)
6-14J to 6-14L, 11-5, A-4A

TRUNC function 6-4, 11-2

-TTY switch (Prime extension)
10-5, 10-11, 10-14, A-2

TYPE declaration 5-6, 5-7

Types (See Data types)

Unconditional GOTO statement
8-14, 8-15

Underscores and dollar signs in
iden t i fie rs 4 -8 , A -3

UNPACK and PACK procedures
(Prime restr ict ions) 9-12,

A-5

UNSIR function (Prime extension)
6-14C, 6-14D, 6-14J to 6-14L,
11-5, A-4A

-UPCASE compiler option 2-13

User-defined ident ifiers 4-8

User-defined scalar data types
6-10 to 6-14

Value parameters 9-3

VAR declaration 5-7 to 5-9

X-15 Second Edition, Update 1

UPD4303-192

Variable parameters 9-3, 9-4

Variables:
defined 4-7, 4-8, 5-7, 5-8
dynamic 6-31 to 6-33
external 9-17
file 6-27 to 6-31, 10-6 to

10-24
PRIMDS file 10-7, 10-8, 10-13
s t a t i c 6 - 3 1

Variant fields 6-23 to 6-25

Variant records 6-23 to 6-25

WHILE statement 8-7, 8-8

WITH statement 6-22, 6-23,
8-16

WITH used with records 6-22,
6-23

Write parameters 10-18 to
10-22

WRITE procedure 10-18 to 10-21

WRITELN procedure 10-22

-XREF and -NOXREF compiler
opt ions 2-13

Second Edition, Update 1 X-16

READER RESPONSE FORM

DOC4303-191 Pascal Reference Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

e x c e l l e n t v e r y g o o d g o o d f a i r p o o r

2. Please rate the document in the following areas:

Readability: hard to understand average very clear
Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few
Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes no

N a m e - . P o s i t i o n :

C o m p a n y : ^

A d d r e s s : ^

Z ip :

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	UPD4303-192 Title Page
	UPD4303-192 Update Instructions
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	About This Book
	xi
	xii
	xiii
	Part I
	Overview
	Chapter 1
	Introduction to Prime Pascal
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	Part II
	Compiling, Loading and Executing Programs
	Chapter 2
	Using the PASCAL Compiler
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	Chapter 3
	Loading and Executing Programs
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	Part II
	Prime Pascal Language Reference
	Chapter 4
	Pascal Language Elements
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	Chapter 5
	Pascal Program Structure
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	Chapter 6
	Data Types
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-14A
	6-14B
	6-14C
	6-14D
	6-14E
	6-14F
	6-14G
	6-14H
	6-14I
	6-14J
	6-14K
	6-14L
	6-15
	6-16
	6-17
	6-17A
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	Chapter 7
	Expressions
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-7A
	7-8
	Chapter 8
	Statements
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	Chapter 9
	Procedures and Functions
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-9A
	9-10
	4ed 9-10
	4ed 9-11
	4ed 9-12
	4ed 9-13
	4ed 9-14
	4ed 9-15
	4ed 9-16
	4ed 9-17
	4ed 9-18
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-18A
	9-19
	9-20
	9-21
	9-22
	Chapter 10
	Input and Output
	10-1
	10-2
	10-3
	10-4
	10-5
	10-5A
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	Chapter 11
	Standard Functions
	11-1
	11-2
	11-3
	11-4
	11-5
	Appendixes
	Appendix A
	Summary of Prime Extensions and Restrictions
	A-1
	A-2
	A-3
	A-4
	A-4A
	A-5
	Appendix B
	Data Formats
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	Appendix C
	ASCII Character Set
	C-1
	C-4
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	Appendix D
	Interfacing Pascal to Other Languages
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	Survey
	

